Patents by Inventor Orlando RIOS

Orlando RIOS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220145486
    Abstract: A product includes an aluminum alloy having an anodized layer. The alloy has a bulk composition including at least 1 wt. % of one or more rare earth elements (REEs). A product includes microstructures extending across a boundary defined between an anodized layer and an unoxidized alloy. Each microstructure includes an intermetallic phase transitioning to an oxidized intermetallic phase across the boundary. A product includes an anodized layer where up to 90% of a thickness of the layer includes voids resulting at least in part from dissolution of a rare earth element oxidized intermetallic phase. The voids are in a morphology of the dissolved oxidized intermetallic phase.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: Scott K. McCall, David Weiss, Michael S. Kesler, Michael J. Thompson, Orlando Rios, Hunter B. Henderson, Zachary Cole Sims, Ryan T. Ott
  • Publication number: 20220056215
    Abstract: Disclosed herein are embodiments of a composition that can be used to make liquid crystalline networks using thiol-ene-based polymerization. In particular embodiments, the liquid crystalline networks can be formed by using the composition embodiments in additive manufacturing methods. The composition comprises a monomer, chain extender compound, and a crosslinker compound and each of these components can be selected so as to influence the thermomechanical and shape memory properties of the liquid crystalline networks and/or objects formed therewith.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 24, 2022
    Inventors: Orlando Rios, William G. Carter, Michael R. Kessler, Yuzhan Li, Monojoy Goswami
  • Publication number: 20220051835
    Abstract: The disclosure describes techniques for forming nanoparticles including Fe16N2 phase. In some examples, the nanoparticles may be formed by first forming nanoparticles including iron, nitrogen, and at least one of carbon or boron. The carbon or boron may be incorporated into the nanoparticles such that the iron, nitrogen, and at least one of carbon or boron are mixed. Alternatively, the at least one of carbon or boron may be coated on a surface of a nanoparticle including iron and nitrogen. The nanoparticle including iron, nitrogen, and at least one of carbon or boron then may be annealed to form at least one phase domain including at least one of Fe16N2, Fe16(NB)2, Fe16(NC)2, or Fe16(NCB)2.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Jian-Ping Wang, Yanfeng Jiang, Craig A. Bridges, Michael P. Brady, Orlando Rios, Roberta A. Meisner, Lawrence F. Allard, JR., Edgar Lara-Curzio, Shihai He
  • Patent number: 11195644
    Abstract: The disclosure describes techniques for forming nanoparticles including Fe16N2 phase. In some examples, the nanoparticles may be formed by first forming nanoparticles including iron, nitrogen, and at least one of carbon or boron. The carbon or boron may be incorporated into the nanoparticles such that the iron, nitrogen, and at least one of carbon or boron are mixed. Alternatively, the at least one of carbon or boron may be coated on a surface of a nanoparticle including iron and nitrogen. The nano particle including iron, nitrogen, and at least one of carbon or boron then may be annealed to form at least one phase domain including at least one of Fe16N2, Fe16(NB)2, Fe16(NC)2, or Fe16(NCB)2.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 7, 2021
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA, UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Jian-Ping Wang, Yanfeng Jiang, Craig A. Bridges, Michael Brady, Orlando Rios, Roberta A. Meisner, Lawrence F. Allard, Edgar Lara-Curzio, Shihai He
  • Publication number: 20210355565
    Abstract: The disclosure concerns methods for making a composition comprising a light metal and an intermetallic comprising the light metal and a light rare earth element. The composition also may include a plurality of nanoparticles comprising an oxide of the light metal. The method includes directly reducing a light rare earth element precursor compound in a melt of the light metal, thereby forming the light rare earth element and nanoparticles of the light metal oxide.
    Type: Application
    Filed: February 4, 2020
    Publication date: November 18, 2021
    Inventors: Orlando Rios, Hunter B. Henderson, Michael S. Kesler, Bruce A. Moyer, Zachary Sims, David Weiss, Ryan Ott, Corby Anderson, Hao Cui
  • Publication number: 20210340423
    Abstract: A phase change material composition for latent heat storage is provided. In one embodiment, the phase change material includes a salt hydrate having a melting temperature (Tm) of from 1° C. to 100° C. as determined in accordance with ASTM E793. The phase change material further includes a stabilizing matrix including a polysaccharide selected from the group of a nanocellulose, a sulfonated polysaccharide, a starch, a glycogen, a chitin, and combinations thereof. A composite article including the phase change material composition is also provided.
    Type: Application
    Filed: April 13, 2021
    Publication date: November 4, 2021
    Inventors: Yuzhan Li, Kyle R. Gluesenkamp, Monojoy Goswami, Navin Kumar, Timothy J. Laclair, Orlando Rios
  • Publication number: 20210324500
    Abstract: An alloy for structural direct-writing additive manufacturing comprising a base element selected from the group consisting of aluminum (Al), nickel (Ni) and a combination thereof, and a rare earth element selected from the group consisting of cerium (Ce), lanthanide (La) and a combination thereof, and a eutectic intermetallic present in said alloy in an amount ranging from about 0.5 wt. % to 7.5 wt. %. The invention is also directed to a method of structural direct-write additive manufacturing using the above-described alloy, as well as 3D objects produced by the method. The invention is also directed to methods of producing the above-described alloy.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicants: UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Orlando RIOS, David WEISS, Zachary C. SIMS, William G. CARTER, Michael S. KESLER
  • Publication number: 20210277263
    Abstract: Methods of printing a three-dimensional object using co-reactive components are disclosed. Thermosetting compositions for three-dimensional printing are also enclosed.
    Type: Application
    Filed: March 15, 2021
    Publication date: September 9, 2021
    Inventors: David R. Fenn, Kurt G. Olson, Reza M. Rock, Cynthia Kutchko, Susan F. Donaldson, Hao Sun, Orlando Rios, William G. Carter
  • Publication number: 20210214823
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 15, 2021
    Inventors: Lawrence Allard, JR., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Publication number: 20210180174
    Abstract: A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
    Type: Application
    Filed: February 23, 2021
    Publication date: June 17, 2021
    Inventors: Michael P. BRADY, Orlando RIOS, YanFeng JIANG, Gerard M. LUDTKA, Craig A. BRIDGES, Jian-Ping WANG, Xiaowei ZHANG, Lawrence F. ALLARD, Edgar LARA-CURZIO
  • Publication number: 20210129270
    Abstract: Disclosed herein are embodiments of an Al—Ce—Ni alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Richard Michi, Peeyush Nandwana, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Publication number: 20210130934
    Abstract: Disclosed herein are embodiments of an Al—Ce—Cu alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Sumit Bahl, Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Patent number: 10982105
    Abstract: Methods of printing a three-dimensional object using co-reactive components are disclosed. Thermosetting compositions for three-dimensional printing are also enclosed.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: April 20, 2021
    Assignees: PPG Industries Ohio, Inc., UT-Battelle, LLC
    Inventors: David R. Fenn, Kurt G. Olson, Reza M. Rock, Cynthia Kutchko, Susan F. Donaldson, Hao Sun, Orlando Rios, William G. Carter
  • Publication number: 20210108292
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Application
    Filed: July 13, 2020
    Publication date: April 15, 2021
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Patent number: 10961615
    Abstract: A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 30, 2021
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Michael P. Brady, Orlando Rios, Yanfeng Jiang, Gerard M. Ludtka, Craig A. Bridges, Jian-Ping Wang, Xiaowei Zhang, Lawrence F. Allard, Edgar Lara-Curzio
  • Publication number: 20210060652
    Abstract: A reactive matrix infiltration process is described herein, which includes contacting a surface of a preform comprising reinforcement material particles with a molten infiltrant comprising a matrix material, the matrix material comprising an Al—Ce alloy, whereby the infiltrant at least partially fills spaces between the reinforcement material particles by capillary action and reacts with the reinforcement material particles to form a composite material form, the composite material comprising the matrix material, at least one intermetallic phase, and, optionally, reinforcement material particles. A composite material form also is described, which includes a plurality of reinforcement material particles comprising a metal alloy or a ceramic, a matrix material at least partially filling spaces between the reinforcement material particles; and at least one intermetallic phase surrounding at least some of the reinforcement material particles.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 4, 2021
    Inventors: Orlando Rios, Craig A. Bridges, Amelia M. Elliott, Hunter B. Henderson, Michael S. Kesler, Zachary Sims, David Weiss
  • Publication number: 20200340082
    Abstract: Described herein are additive manufacturing methods and products made using such methods. The alloy compositions described herein are specifically selected for the additive manufacturing methods and provide products that exhibit superior mechanical properties as compared to their cast counterparts. Using the compositions and methods described herein, products that do not exhibit substantial coarsening, such as at elevated temperatures, can be obtained. The products further exhibit uniform microstructures along the print axis, thus contributing to improved strength and performance. Additives also can be used in the alloys described herein.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicants: UT-Battelle, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., Eck Industries Incorporated
    Inventors: Alex J. Plotkowski, Orlando Rios, Sudarsanam Suresh Babu, Ryan R. Dehoff, Ryan Ott, Zachary C. Sims, Niyanth Sridharan, David Weiss, Hunter B. Henderson
  • Patent number: 10782193
    Abstract: An example apparatus can comprise an emitter to emit radio frequency radiation, an absorber that changes temperature based on emissions from the emitter, and one or more sensors to measure a temperature difference between a sample and a reference coupled to the absorber.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 22, 2020
    Assignees: UT-Battelle, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Tom Byvank, Benjamin S. Conner, Roger A. Kisner, Michael A. McGuire, Orlando Rios, Michael S. Kesler, Gerard M. Ludtka, Boyd Evans, Cajetan Ikenna Niebedim, Ralph William McCallum
  • Patent number: 10766181
    Abstract: A method for producing magnet-polymer pellets useful as a feedstock in an additive manufacturing process, comprising: (i) blending thermoplastic polymer and hard magnetic particles; (ii) feeding the blended magnet-polymer mixture into a pre-feed hopper that feeds directly into an inlet of a temperature-controlled barrel extruder; (iii) feeding the blended magnet-polymer mixture into the barrel extruder at a fixed feed rate of 5-20 kg/hour, wherein the temperature at the outlet is at least to no more than 10° C. above a glass transition temperature of the blended magnet-polymer mixture; (iv) feeding the blended magnet-polymer mixture directly into an extruding die; (v) passing the blended magnet-polymer mixture through the extruding die at a fixed speed; and (vi) cutting the magnet-polymer mixture at regular intervals as the mixture exits the extruding die at the fixed speed. The use of the pellets as feed material in an additive manufacturing process is also described.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 8, 2020
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Parans Paranthaman, Ling Li, Vlastimil Kunc, Brian K. Post, Orlando Rios, Robert H. Fredette, John Ormerod
  • Patent number: 10760148
    Abstract: Described herein are additive manufacturing methods and products made using such methods. The alloy compositions described herein are specifically selected for the additive manufacturing methods and provide products that exhibit superior mechanical properties as compared to their cast counterparts. Using the compositions and methods described herein, products that do not exhibit substantial coarsening, such as at elevated temperatures, can be obtained. The products further exhibit uniform microstructures along the print axis, thus contributing to improved strength and performance. Additives also can be used in the alloys described herein.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 1, 2020
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., Eck Industries Incorporated
    Inventors: Alex J. Plotkowski, Orlando Rios, Sudarsanam Suresh Babu, Ryan R. Dehoff, Ryan Ott, Zachary C. Sims, Niyanth Sridharan, David Weiss, Hunter B. Henderson