Patents by Inventor Osami Yokota

Osami Yokota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10480789
    Abstract: Disclosed is a heat-transfer device adapted to enhance uniformity of cooling characteristics to be given to a heat transfer object, and thereby to extend a life of the heat transfer object.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: November 19, 2019
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Osami Yokota, Shohei Numata, Tomomi Koganezawa, Tetsuma Tatsumi
  • Patent number: 10443845
    Abstract: A gas turbine combustor includes a combustor liner, a flow sleeve in which the combustor liner is provided and an annular flow passage formed between the combustor liner and the flow sleeve, through which compressed air flows. The flow sleeve includes an internal-diameter changing portion diagonally connected to the flow sleeve and an internal-diameter reducing portion connected to the internal-diameter changing portion and extending along the flow direction of the compressed air. The combustor liner includes an annular protruding portion annularly formed on an outer wall of the combustor liner and protruding toward the flow sleeve. The annular protruding portion is located at a position on the outer wall of the combustion liner, the position facing a connection position between the flow sleeve and the internal-diameter changing portion or being at an upstream side of the position facing the connection position in the flow direction of the compressed air.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: October 15, 2019
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Shohei Numata, Osami Yokota, Tetsuma Tatsumi
  • Patent number: 10184662
    Abstract: A gas turbine combustor achieves improved product reliability and a reduced increase in pressure loss through improvements made on a cooling characteristic and structural intensity. The structure of the gas turbine combustor includes a plurality of circularity recesses formed on a side of an annular passage on a partial area of a combustion liner that requires cooling. Each of the circularity recesses has a rectangular surface forming a convex at a right angle with respect to a flowing direction of combustion air. The circularity recesses form a rectangular triangle having an oblique surface facing upstream of the flowing direction of the combustion air.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 22, 2019
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Osami Yokota, Masataka Hidaka, Shohei Numata, Tetsuma Tatsumi
  • Patent number: 9958163
    Abstract: A gas turbine combustor is provided in which product reliability and heat transfer promotion are compatible while suppressing an increase in pressure loss. In a gas turbine combustor comprising a combustor liner, an outer tube provided around an outer periphery of the combustor liner, and an annular flow passage in which a cooling medium (cooling air) flows and which is formed between an outer surface of the combustor liner and an inner surface of the outer tube, the outer tube includes an inner diameter reduced portion and a taper portion smoothly connecting the inner diameter reduced portion and an inner peripheral portion on an upstream side, and is provided at an inner surface of the taper portion with longitudinal vortex generating means generating a vortex that has a central rotation axis in a flowing direction of the cooling medium (cooling air).
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 1, 2018
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Shohei Numata, Osami Yokota, Tetsuma Tatsumi, Akinori Hayashi
  • Patent number: 9435536
    Abstract: An object of the present invention is to provide a gas turbine combustor that can suppress an increase in pressure loss while improving product reliability. The gas turbine combustor includes a combustor liner, an air transfer casing installed on the outer circumference of the combustor liner, the combustor liner and the air transfer casing defining an annular passage therebetween adapted to allow a heat-transfer medium to flow therethrough, and a plurality of vortex generating devices disposed on an inside surface of the air transfer casing, the vortex generating devices generating longitudinal vortices each having a rotational axis extending in a flow direction of a heat-transfer medium. The plurality of vortex generating devices are arranged in paired manner, with each pair of devices generating vortices having rotational directions opposed to each other.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 6, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Osami Yokota, Tomomi Koganezawa, Shohei Numata, Shohei Yoshida
  • Publication number: 20160069566
    Abstract: A gas turbine combustor includes a combustor liner, a flow sleeve in which the combustor liner is provided and an annular flow passage formed between the combustor liner and the flow sleeve, through which compressed air flows. The flow sleeve includes an internal-diameter changing portion diagonally connected to the flow sleeve and an internal-diameter reducing portion connected to the internal-diameter changing portion and extending along the flow direction of the compressed air. The combustor liner includes an annular protruding portion annularly formed on an outer wall of the combustor liner and protruding toward the flow sleeve. The annular protruding portion is located at a position on the outer wall of the combustion liner, the position facing a connection position between the flow sleeve and the internal-diameter changing portion or being at an upstream side of the position facing the connection position in the flow direction of the compressed air.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 10, 2016
    Inventors: Shohei NUMATA, Osami YOKOTA, Tetsuma TATSUMI
  • Publication number: 20150369486
    Abstract: Disclosed is a heat-transfer device adapted to enhance uniformity of cooling characteristics to be given to a heat transfer object, and thereby to extend a life of the heat transfer object.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Osami YOKOTA, Shohei NUMATA, Tomomi KOGANEZAWA, Tetsuma TATSUMI
  • Publication number: 20150121885
    Abstract: There is provided a gas turbine combustor that achieves improved product reliability and a reduced increase in pressure loss through improvements made on a cooling characteristic and structural intensity. A gas turbine combustor structure includes a plurality of circularity recesses 20 formed on a side of an annular passage 11 on a partial area of a combustion liner 8 that requires cooling. The circularity recesses 20 each have a rectangular surface 25 forming a convex at a right angle with respect to a flowing direction of combustion air 2. The circularity recesses 20 is a rectangular triangle having an oblique surface 26 facing upstream of the flowing direction of the combustion air 2.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Inventors: Osami YOKOTA, Masataka HIDAKA, Shohei NUMATA, Tetsuma TATSUMI
  • Publication number: 20150113998
    Abstract: The burners include a central burner and a plurality of outer burners disposed around the central burner. Each of the outer burners is equipped with a fuel supply system that includes a fuel flow regulating valve. The outer circumference of the combustor liner is provided with a cylindrical flow sleeve. At least one flow velocity measurement unit is disposed in a circular flow path formed between the combustor liner and the flow sleeve to measure the flow velocity of air flowing downward. The gas turbine combustor also includes a control device that adjusts the fuel flow rate of the fuel, which is to be supplied to the outer burners, in accordance with the flow velocity of the air in the circular flow path, which is measured by the flow velocity measurement units.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Inventors: Tetsuma TATSUMI, Shohei NUMATA, Osami YOKOTA
  • Publication number: 20150101336
    Abstract: A gas turbine combustor is provided in which product reliability and heat transfer promotion are compatible while suppressing an increase in pressure loss. In a gas turbine combustor comprising a combustor liner, an outer tube provided around an outer periphery of the combustor liner, and an annular flow passage in which a cooling medium (cooling air) flows and which is formed between an outer surface of the combustor liner and an inner surface of the outer tube, the outer tube includes an inner diameter reduced portion and a taper portion smoothly connecting the inner diameter reduced portion and an inner peripheral portion on an upstream side, and is provided at an inner surface of the taper portion with longitudinal vortex generating means generating a vortex that has a central rotation axis in a flowing direction of the cooling medium (cooling air).
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Shohei NUMATA, Osami YOKOTA, Tetsuma TATSUMI, Akinori HAYASHI
  • Publication number: 20140230442
    Abstract: An object of the present invention is to provide a gas turbine combustor that can suppress an increase in pressure loss while improving product reliability. The gas turbine combustor includes a combustor liner, an air transfer casing installed on the outer circumference of the combustor liner, the combustor liner and the air transfer casing defining an annular passage therebetween adapted to allow a heat-transfer medium to flow therethrough, and a plurality of vortex generating devices disposed on an inside surface of the air transfer casing, the vortex generating devices generating longitudinal vortices each having a rotational axis extending in a flow direction of a heat-transfer medium. The plurality of vortex generating devices are arranged in paired manner, each pair of devices generating vortices having rotational directions opposed to each other.
    Type: Application
    Filed: November 1, 2013
    Publication date: August 21, 2014
    Applicant: HITACHI, LTD.
    Inventors: Osami YOKOTA, Tomomi KOGANEZAWA, Shohei NUMATA, Shohei YOSHIDA
  • Patent number: 7926288
    Abstract: The present invention provides a reformed-fuel-burning gas turbine system that constantly generates good-quality reformed fuel even when heavy fuel has a different composition. The reformed-fuel-burning gas turbine system according to the present invention comprises a heavy oil heater; a water heater; a reformer vessel for mixing high-temperature, high-pressure water with high-temperature, high-pressure heavy oil to cause a hydrothermal reaction and producing reformed fuel from heavy oil; and a gas turbine which operates on the reformed fuel.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 19, 2011
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Osami Yokota, Shinichi Inage, Koji Nishida, Akinori Hayashi, Hirokazu Takahashi, Shinsuke Kokubo
  • Patent number: 7707816
    Abstract: A gas turbine system burning heavy-oil modified fuel and a method of operating the gas turbine system, which covers from a stage of modifying heavy oil and producing gas turbine fuel to a stage of operating a gas turbine, including startup, ordinary shutdown and emergency shutdown of the gas turbine. The gas turbine system burning heavy-oil modified fuel comprises a reactor for mixing heavy oil and water to cause reaction, thereby separating and removing a heavy component from the heavy oil, a gas-liquid separator for separating hydrocarbon gas and modified oil obtained in the reactor from each other, a gas turbine combustor for burning the hydrocarbon gas supplied from the gas-liquid separator, and a gas turbine driven by combustion gas produced in the gas turbine combustor. The system further comprises another line for extracting the hydrocarbon gas externally of a relevant system region.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: May 4, 2010
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Hirokazu Takahashi, Shinichi Inage, Kouji Nishida, Nobuyuki Hokari, Osami Yokota, Akinori Hayashi, Shinsuke Kokubo
  • Patent number: 7658078
    Abstract: A heavy oil reforming system includes a reforming preheater raising the temperature of a mixed fluid comprising a high pressure heavy oil and high pressure steam up to a temperature for reforming reaction. The mixed fluid having been heated up to the temperature for reforming reaction is introduced into a reformer kept at the temperature for reforming reaction and thereby the heavy oil is reformed. This reforming system allows the attainment of a residence time of 1 to 10 min necessary for reforming in a uniform or nearly uniform temperature field, thereby implementing the manufacturing of reformed fuels from a large volume of heavy oil.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 9, 2010
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Koji Nishida, Nobuyuki Hokari, Shin-ichi Inage, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi, Akinori Hayashi
  • Patent number: 7611676
    Abstract: In a method for producing gas turbine fuel through the step of modifying heavy fuel oil with the use of an asphaltene-insoluble solvent, the utilization factor of the heavy fuel oil usable as gas turbine fuel is increased by making asphaltene selectively removable. A solvent having a specific inductive capacity in the range of 1.4 to 2.0 is used as the asphaltene-insoluble solvent. In particular, water controlled in temperature and pressure so as to have a specific inductive capacity in the above range is used as the asphaltene-insoluble solvent. By using such a solvent, an asphaltene component contained in the heavy fuel oil can be selectively removed and power generation can be performed while utilizing 95% or more of the heavy fuel oil.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 3, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Shinichi Inage, Hirokazu Takahashi, Koji Nishida, Akinori Hayashi, Nobuyuki Hokari, Osami Yokota, Shinsuke Kokubo, Tetsuo Sasada, Tsunemasa Nishijima, Toshifumi Sasao
  • Patent number: 7594387
    Abstract: A gas turbine which can be easily employed in an area where it is hard to obtain a sufficient amount of water, such as an isolated island. Heated and pressurized heavy oil and water in a supercritical state are mixed with each other in a modifying unit to produce fuel-purpose modified oil. The fuel-purpose modified oil is depressurized by a depressurizing valve. Due to a temperature fall caused by adiabatic expansion with the depressurization, the fuel-purpose modified oil is brought into a two-phase state where moisture is in a gas phase (steam) and modified oil is in a liquid phase. The fuel-purpose modified oil is separated into the steam and the modified oil by a gas-liquid separator. The separated steam is condensed to water in a condenser and returned to a water supply line. The modified oil in the liquid phase is supplied to a combustor, thereby driving a gas turbine.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: September 29, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Shinichi Inage, Nobuyuki Hokari, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi
  • Patent number: 7591983
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 22, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20090032436
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 5, 2009
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20070283701
    Abstract: The present invention provides a reformed-fuel-burning gas turbine system that constantly generates good-quality reformed fuel even when heavy fuel has a different composition. The reformed-fuel-burning gas turbine system according to the present invention comprises a heavy oil heater; a water heater; a reformer vessel for mixing high-temperature, high-pressure water with high-temperature, high-pressure heavy oil to cause a hydrothermal reaction and producing reformed fuel from heavy oil; and a gas turbine which operates on the reformed fuel.
    Type: Application
    Filed: June 8, 2007
    Publication date: December 13, 2007
    Applicants: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Osami Yokota, Shinichi Inage, Koji Nishida, Akinori Hayashi, Hirokazu Takahashi, Shinsuke Kokubo
  • Publication number: 20070215522
    Abstract: In a method for producing gas turbine fuel through the step of modifying heavy fuel oil with the use of an asphaltene-insoluble solvent, the utilization factor of the heavy fuel oil usable as gas turbine fuel is increased by making asphaltene selectively removable. A solvent having a specific inductive capacity in the range of 1.4 to 2.0 is used as the asphaltene- insoluble solvent. In particular, water controlled in temperature and pressure so as to have a specific inductive capacity in the above range is used as the asphaltene-insoluble solvent. By using such a solvent, an asphaltene component contained in the heavy fuel oil can be selectively removed and power generation can be performed while utilizing 95% or more of the heavy fuel oil.
    Type: Application
    Filed: September 25, 2006
    Publication date: September 20, 2007
    Inventors: Shinichi Inage, Hirokazu Takahashi, Koji Nishida, Akinori Hayashi, Nobuyuki Hokari, Osami Yokota, Shinsuke Kokubo, Tetsuo Sasada, Tsunemasa Nishijima, Toshifumi Sasao