Patents by Inventor Osamu Hatozaki

Osamu Hatozaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8974947
    Abstract: When an electrode material having a weight-average mesopore/macropore specific surface area within a specific range is used, there arises an expansion of a cell caused by the generation of decomposed gas from a component of electrolyte solution during the pre-doping process of lithium ions. A potential drop upon the pre-doping process is adjusted so as to reduce or suppress the expansion of the cell. Specifically, since the pre-doping speed is increased, the negative electrode can speedily reach the potential by which an SEI component made of lithium alkyl carbonate can be produced on the surface of the negative electrode. Consequently, the absolute amount of the gas produced by the decomposition of the electrolyte solution can be reduced, whereby the expansion of the electric storage device can be reduced.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 10, 2015
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Tsutomu Fujii, Osamu Hatozaki
  • Patent number: 8310811
    Abstract: [Problem] The present invention aims to enhance a characteristic of a lithium ion electric storage device upon charging or discharging with high load, and increasing a working temperature range thereof. [Means for Solving Problem] In a positive electrode active material used for a lithium ion electric storage device, the BET specific surface area is 1500 m2/g or more and 3000 m2/g or less, the ratio A of the pore volume within the range of the pore diameter of 0.6 nm or more and less than 1 nm to the pore volume within the range of the pore diameter of 0.6 nm or more and 200 nm or less in the active material satisfies 0?A?0.80, and the ratio B of the active material of the pore volume within the range of the pore diameter of 1 nm or more and 6 nm or less to the pore volume within the range of the pore diameter of 0.6 nm or more and 200 nm or less in the active material satisfies 0.20?B?1.0.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 13, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Tsutomu Fujii, Osamu Hatozaki
  • Patent number: 8203826
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 19, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Patent number: 8142930
    Abstract: To present a carbon material which provides an electrical storage device not only ensuring a high energy density but also realizing a high output and an excellent low temperature performance. A negative electrode active material for an electrical storage device employing an aprotic organic solvent electrolyte solution containing a lithium salt as an electrolytes characterized in that it is made of a carbon material having a specific surface area of from 0.01 to 50 m2/g and a total mesopore volume of from 0.005 to 1.0 cc/g, wherein volumes of mesopores having pore diameters of from 100 to 400 ? occupy at least 25% of the total mesopore volume.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 27, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kenji Kojima, Nobuo Ando, Tsutomu Fujii, Hiromoto Taguchi, Osamu Hatozaki, Yukinori Hato, Chisato Marumo
  • Patent number: 8004823
    Abstract: A lithium ion capacitor includes a positive electrode made of a material capable of reversibly doping and dedoping lithium ions and/or anions; a negative electrode made of a material capable of reversibly doping and dedoping lithium ions; and an electrolytic solution made of an aprotonic organic solvent electrolyte solution of a lithium salt. When the negative electrode and/or positive electrode and a lithium ion supply source are electrochemically brought into contact, lithium ions are doped in a negative electrode and/or positive electrode. A positive electrode potential after the positive electrode and negative electrode are short-circuited is 2.0 V (vs. Li/Li+) or less. The positive electrode and/or negative electrode has a current collector made of a metal foil that has many holes that penetrate through both sides and have an average diameter of inscribed circles of the through-holes of 100 ?m or less.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 23, 2011
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Hiromoto Taguchi, Nobuo Ando, Hideki Shibuya, Shinichi Tasaki, Risa Miyagawa, Yukinori Hato, Osamu Hatozaki
  • Patent number: 7817403
    Abstract: A lithium ion capacitor having high energy density, high output density, high capacity and high safety includes a positive electrode made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution. Wherein, the positive electrode and the negative electrode are laminated or wound with a separator interposed between them, the area of the positive electrode is smaller than the area of the negative electrode. The face of the positive electrode is substantially covered by the face of the negative electrode when they are laminated or wound.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: October 19, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Hiromoto Taguchi, Kohei Matsui, Risa Takahata, Kenji Kojima, Nobuo Ando, Yukinori Hato, Osamu Hatozaki
  • Publication number: 20100255356
    Abstract: When an electrode material having a weight-average mesopore/macropore specific surface area within a specific range is used, there arises an expansion of a cell caused by the generation of decomposed gas from a component of electrolyte solution during the pre-doping process of lithium ions. A potential drop upon the pre-doping process is adjusted so as to reduce or suppress the expansion of the cell. Specifically, since the pre-doping speed is increased, the negative electrode can speedily reach the potential by which an SEI component made of lithium alkyl carbonate can be produced on the surface of the negative electrode. Consequently, the absolute amount of the gas produced by the decomposition of the electrolyte solution can be reduced, whereby the expansion of the electric storage device can be reduced.
    Type: Application
    Filed: March 26, 2010
    Publication date: October 7, 2010
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Tsutomu Fujii, Osamu Hatozaki
  • Publication number: 20100142121
    Abstract: [Problem] The present invention aims to enhance a characteristic of a lithium ion electric storage device upon charging or discharging with high load, and increasing a working temperature range thereof. [Means for Solving Problem] In a positive electrode active material used for a lithium ion electric storage device, the BET specific surface area is 1500 m2/g or more and 3000 m2/g or less, the ratio A of the pore volume within the range of the pore diameter of 0.6 nm or more and less than 1 nm to the pore volume within the range of the pore diameter of 0.6 nm or more and 200 nm or less in the active material satisfies 0?A?0.80, and the ratio B of the active material of the pore volume within the range of the pore diameter of 1 nm or more and 6 nm or less to the pore volume within the range of the pore diameter of 0.6 nm or more and 200 nm or less in the active material satisfies 0.20?B?1.0.
    Type: Application
    Filed: November 20, 2009
    Publication date: June 10, 2010
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Tsutomu Fujii, Osamu Hatozaki
  • Publication number: 20100027195
    Abstract: A lithium ion capacitor includes a positive electrode made of a material capable of reversibly doping and dedoping lithium ions and/or anions; a negative electrode made of a material capable of reversibly doping and dedoping lithium ions; and an electrolytic solution made of an aprotonic organic solvent electrolyte solution of a lithium salt. When the negative electrode and/or positive electrode and a lithium ion supply source are electrochemically brought into contact, lithium ions are doped in a negative electrode and/or positive electrode. A positive electrode potential after the positive electrode and negative electrode are short-circuited is 2.0 V (vs. Li/Li+) or less. The positive electrode and/or negative electrode has a current collector made of a metal foil that has many holes that penetrate through both sides and have an average diameter of inscribed circles of the through-holes of 100 ?m or less.
    Type: Application
    Filed: November 13, 2006
    Publication date: February 4, 2010
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hiromoto Taguchi, Nobuo Ando, Hideki Shibuya, Shinichi Tasaki, Risa Miyagawa, Yukinori Hato, Osamu Hatozaki
  • Publication number: 20090161296
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 25, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Publication number: 20090097189
    Abstract: A lithium ion capacitor having high energy density, high output density, high capacity and high safety is provided. A lithium ion capacitor comprising a positive electrode 1 made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode 2 made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution, wherein the positive electrode 1 and the negative electrode 2 are laminated or wound with a separator interposed between them, the area of the positive electrode 1 is smaller than the area of the negative electrode 2, and the face of the positive electrode 1 is substantially covered by the face of the negative electrode 2 when they are laminated or wound.
    Type: Application
    Filed: July 28, 2006
    Publication date: April 16, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Hiromoto Taguchi, Kohei Matsui, Risa Takahata, Kenji Kojima, Nobuo Ando, Yukinori Hato, Osamu Hatozaki
  • Publication number: 20090023066
    Abstract: To present a carbon material which provides an electrical storage device not only ensuring a high energy density but also realizing a high output and an excellent low temperature performance. A negative electrode active material for an electrical storage device employing an aprotic organic solvent electrolyte solution containing a lithium salt as an electrolytes characterized in that it is made of a carbon material having a specific surface area of from 0.01 to 50 m2/g and a total mesopore volume of from 0.005 to 1.0 cc/g, wherein volumes of mesopores having pore diameters of from 100 to 400 ? occupy at least 25% of the total mesopore volume.
    Type: Application
    Filed: April 25, 2006
    Publication date: January 22, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kenji Kojima, Nobuo Ando, Tsutomu Fujii, Hiromoto Taguchi, Osamu Hatozaki, Yukinori Hato, Chisato Marumo
  • Patent number: 6544478
    Abstract: A QCM sensor including a sensor device, the sensor device having a crystal substrate, on both of front and rear surfaces of which a pair of electrodes are disposed so as to oppose with each other and the QCM sensor detecting and quantitatively analyzing components of a sample from either a variation in a fundamental resonant frequency or a variation in an impedance when a surface of one of the pair of electrodes is immersed into either a sample gas or a sample solution. The sensor device is arranged in a multi-channel structure such that four mutually opposing electrodes (11A through 14A, 12B through 14B) are disposed on both front and rear surfaces of the crystal substrate 10, each electrode being arranged to enable a fixation of a receptor which is different for each component of a sample to be detected and quantitatively analyzed, whereby the QCM sensor detects and quantitatively analyzes once the components of one sample different for different electrodes.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: April 8, 2003
    Assignees: Kabushiki Kaisha Meidensha
    Inventors: Noboru Oyama, Tetsu Tatsuma, Yoshihito Watanabe, Osamu Hatozaki, Kaoru Kitakizaki, Masanori Haba, Takayuki Noguchi