Patents by Inventor Osamu Morimoto

Osamu Morimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949160
    Abstract: A distributed antenna includes a strip member extending in a strip-like shape including a dielectric body of a plate shape having a first surface that is one surface of the dielectric body and a second surface that is opposite to the first surface; a transmission line provided on the first surface, on the second surface, or between the first surface and the second surface; and a plurality of antenna elements electrically connected to the transmission line and disposed in a distributed manner on the first surface or on the second surface, or electrically connected to the transmission line and disposed in a distributed manner between the first surface and the second surface.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: April 2, 2024
    Assignee: AGC Inc.
    Inventors: Akira Kumagai, Yasuo Morimoto, Takeshi Motegi, Keisuke Arai, Osamu Kagaya
  • Patent number: 11592193
    Abstract: A header includes a plurality of branch tubes and a header manifold. If refrigerant flowing into the header manifold forms a pattern of annular flow or churn flow, tips of the branch tubes inserted into the header manifold pass through a liquid-phase portion having a thickness ? [m] and reach a gas-phase portion. The thickness ? [m] of the liquid-phase portion is defined as ?=G×(1?x)×D/(4?L×ULS), where G is a flow speed [kg/(m2 s)] of the refrigerant, x is a quality of the refrigerant, D is an inside diameter [m] of the header manifold, ?L is a liquid density [kg/m3] of the refrigerant, ULS is a reference apparent liquid speed [m/s] that is a maximum value within a range of variation in an apparent gas speed of the refrigerant flowing into a flow space of the header manifold. The reference apparent liquid speed ULS [m/s] is defined as G(1?x)/?L.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 28, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoji Onaka, Takashi Matsumoto, Kosuke Miyawaki, Hiroyuki Okano, Takanori Koike, Takeshi Hatomura, Osamu Morimoto
  • Patent number: 11543185
    Abstract: The air-conditioning apparatus includes a heat exchanger including a plurality of heat transfer tubes and a header manifold an axial fan and a refrigerant circuit. When the distance from the center of the flow space in the horizontal plane is represented on a scale of 0 to 100%, where 0% represents the center of the flow space and 100% is the position of the wall surface of the header manifold, among the plurality of branch tubes located within a height range that allows the blade to rotate, the majority of the branch tubes located at or below the height of the boss are connected to the header manifold such that their distal ends are positioned at 0 to 50% of the distance from the center, and the majority of the branch tubes located above the height of the boss are connected to the header manifold such that their distal ends are positioned at more than 50% of the distance from the center.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: January 3, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoji Onaka, Takashi Matsumoto, Kosuke Miyawaki, Hiroyuki Okano, Takanori Koike, Osamu Morimoto
  • Patent number: 11371755
    Abstract: An air-conditioning apparatus that includes a compressor, a flow switching device, an outdoor heat exchange unit, an expansion section and an indoor heat exchanger, which are connected by pipes, in which the outdoor heat exchange unit includes a first outdoor heat exchanger, a first flow rate control device, a second outdoor heat exchanger, a second flow rate control device, a bypass pipe, the second outdoor heat exchanger, the second flow rate control device, a third flow rate control device, and a flow control device.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 28, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroki Maruyama, Osamu Morimoto, Hiroyuki Okano, Naofumi Takenaka
  • Patent number: 11326787
    Abstract: A refrigerant distributor branches refrigerant flowing in a refrigerant circuit into three, and includes a first bifurcate flow divider including a first pipe portion forming one inflow port, a second pipe portion and a third pipe portion forming two outflow ports communicating with the inflow port of the first pipe portion, and a second bifurcate flow divider including a fourth pipe portion forming one inflow port, and a fifth pipe portion and a sixth pipe portion forming two outflow ports communicating with the inflow port of the fourth pipe portion. The outflow port of the third pipe portion and the inflow port of the fourth pipe portion communicate with each other, and an angle ? formed by a first plane passing through the first bifurcate flow divider and a second plane passing through the second bifurcate flow divider is between 60 and 120 degrees.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 10, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kosuke Miyawaki, Yoji Onaka, Osamu Morimoto, Hiroyuki Okano, Takanori Koike, Hiroki Maruyama
  • Patent number: 11313595
    Abstract: An air-conditioning system includes a heat source side refrigerant circuit in which a heat source side heat exchanger is provided, a load side heat medium circuit in which a load side heat exchanger is provided, an intermediate heat exchanger, and a heat medium sealing. The heat medium sealing mechanism includes a supply port through which the heat medium and gas flow, the gas being more soluble in the heat medium than air, a discharge port through which the gas pushed by the heat medium is discharged, and a flow straightener that is connected to the load side heat medium circuit in such a manner that, when the gas is supplied, the gas flows from the supply port to the discharge port, and when the heat medium is supplied, the heat medium flows from the supply port to the discharge port.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: April 26, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naofumi Takenaka, Yuji Motomura, Osamu Morimoto
  • Patent number: 11187447
    Abstract: A refrigeration cycle apparatus includes a refrigerant circuit, through which refrigerant is circulated, including a compressor, a heat source side heat exchanger, a first expansion device, and a load side heat exchanger, a controller controlling the refrigerant circuit, and a bypass pipe that branches off from a high-pressure pipe extending from the compressor to the first expansion device and that is connected to a low-pressure pipe on a suction side of the compressor. The apparatus further includes a precooling heat exchanger that is provided in the bypass pipe and that cools the refrigerant diverted to the bypass pipe, a second expansion device that is provided in the bypass pipe and that reduces a pressure of the refrigerant cooled by the precooling heat exchanger, and a refrigerant cooler that is provided in the bypass pipe and that cools the controller with the refrigerant reduced in pressure by the second expansion device.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 30, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takanori Koike, Osamu Morimoto, Kazuyoshi Shinozaki, Hiroyuki Okano
  • Patent number: 11156412
    Abstract: A heat exchanger includes first and second headers connected to end portions of heat transfer tubes. The second header includes a header pipe defining a flow space that communicates with the heat transfer tubes and, when the heat exchanger acts as an evaporator, allows refrigerant in a two-phase gas-liquid state to pass through the flow space into the heat transfer tubes. A bypass pipe is disposed between an entrance portion and the first header. The entrance portion has an entrance distance L between a connection end portion connected to a refrigerant pipe and a central axis of the bypass pipe. The entrance distance L of the entrance portion satisfies L?5di, where di is an inner diameter of a flow space of the header pipe on an orthogonal plane orthogonal to a direction of refrigerant flow. The bypass pipe is inserted in the flow space of the entrance portion.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: October 26, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoji Onaka, Takashi Matsumoto, Kosuke Miyawaki, Hiroyuki Okano, Takanori Koike, Takeshi Hatomura, Osamu Morimoto
  • Patent number: 11149999
    Abstract: A refrigeration cycle apparatus includes a refrigerant circuit, a controller, a bypass pipe, a refrigerant cooler, a second expansion device, and a controller temperature sensor. In a case where a temperature measured by the controller temperature sensor is lower than or equal to a set temperature in a state where an opening degree of the second expansion device is controlled to an instruction opening degree that is lower than or equal to a set opening degree, the controller is configured to perform foreign substance release control where the controller is configured to increase the opening degree of the second expansion device and then is configured to return the opening degree of the second expansion device to the instruction opening degree.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 19, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takanori Koike, Osamu Morimoto, Hiroyuki Okano
  • Publication number: 20210310672
    Abstract: A header includes a plurality of branch tubes and a header manifold. If refrigerant flowing into the header manifold forms a pattern of annular flow or churn flow, tips of the branch tubes inserted into the header manifold pass through a liquid-phase portion having a thickness ? [m] and reach a gas-phase portion. The thickness ? [m] of the liquid-phase portion is defined as ?=G×(1?x)×D/(4?L×ULS), where G is a flow speed [kg/(m2s)] of the refrigerant, x is a quality of the refrigerant, D is an inside diameter [m] of the header manifold, ?L is a liquid density [kg/m3] of the refrigerant, ULS is a reference apparent liquid speed [m/s] that is a maximum value within a range of variation in an apparent gas speed of the refrigerant flowing into a flow space of the header manifold. The reference apparent liquid speed ULS [m/s] is defined as G(1?x)/?L.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoji ONAKA, Takashi MATSUMOTO, Kosuke MIYAWAKI, Hiroyuki OKANO, Takanori KOIKE, Takeshi HATOMURA, Osamu MORIMOTO
  • Patent number: 11125476
    Abstract: A refrigeration cycle apparatus includes a main circuit through which refrigerant circulates and in which a compressor, a condenser, a first expansion device, a centrifugal gas-liquid separator that separates refrigerant into gas refrigerant and liquid refrigerant by using centrifugal force, and an evaporator are connected by refrigerant pipes; and a bypass that returns the gas refrigerant obtained through the separation by the gas-liquid separator to a suction side of the compressor. The gas-liquid separator includes a cylindrical container, an inflow pipe, a gas outflow pipe, and a liquid outflow pipe. The main circuit includes a second expansion device provided between the liquid outflow pipe of the gas-liquid separator and the evaporator. The gas refrigerant discharged from the gas outflow pipe of the gas-liquid separator flows into the bypass, and the bypass is provided with a third expansion device.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 21, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kosuke Miyawaki, Yoji Onaka, Osamu Morimoto, Hiroyuki Okano, Takanori Koike, Hiroki Maruyama
  • Patent number: 11015820
    Abstract: An outdoor unit comprises a casing, a fan, a heat exchanger, an electrical component, a heat radiation member, and a duct. The casing is provided with an air outlet. The fan is disposed inside the casing and configured to blow air to the outside of the casing via the air outlet. The heat exchanger is disposed inside the casing at a position lower than the fan. The electrical component is disposed inside the casing at a position lower than the heat exchanger. The heat radiation member is connected to the electrical component inside the casing. The duct is configured to accommodate at least part of the heat radiation member inside the casing and extend in the vertical direction. An upper end of the duct is configured to protrude upward higher than a lower end of the heat exchanger.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 25, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masaki Muramatsu, Keiji Harada, Shinji Murata, Shinsaku Kusube, Osamu Morimoto, Shigetoshi Ipposhi
  • Patent number: 10976085
    Abstract: In an air-conditioning apparatus in which air sucked into a casing of an outdoor unit by a fan is discharged from an upper portion of the casing, each of liquid header portions is configured to be connected with each of heat transfer tubes of a plurality of divided regions formed by dividing the outdoor heat exchangers in an up and down direction. Further, a shunt is configured to supply two-phase refrigerant, in which quality is adjusted by a gas-liquid separator, to each of the liquid header portions. To each of the liquid header portions, the shunt supplies the two-phase refrigerant of the amount corresponding to the air quantity of the divided region connected to each of the liquid header portions.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 13, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoji Onaka, Takashi Matsumoto, Hiroyuki Okano, Eito Saito, Hirofumi Koge, Osamu Morimoto, Hiroki Murakami, Hiroaki Nakamune
  • Publication number: 20200271333
    Abstract: A refrigerant distributor branches refrigerant flowing in a refrigerant circuit into three, and includes a first bifurcate flow divider including a first pipe portion forming one inflow port, a second pipe portion and a third pipe portion forming two outflow ports communicating with the inflow port of the first pipe portion, and a second bifurcate flow divider including a fourth pipe portion forming one inflow port, and a fifth pipe portion and a sixth pipe portion forming two outflow ports communicating with the inflow port of the fourth pipe portion. The outflow port of the third pipe portion and the inflow port of the fourth pipe portion communicate with each other, and an angle ? formed by a first plane passing through the first bifurcate flow divider and a second plane passing through the second bifurcate flow divider is between 60 and 120 degrees.
    Type: Application
    Filed: September 25, 2017
    Publication date: August 27, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kosuke MIYAWAKI, Yoji ONAKA, Osamu MORIMOTO, Hiroyuki OKANO, Takanori KOIKE, Hiroki MARUYAMA
  • Publication number: 20200271357
    Abstract: A refrigeration cycle apparatus includes a main circuit through which refrigerant circulates and in which a compressor, a condenser, a first expansion device, a centrifugal gas-liquid separator that separates refrigerant into gas refrigerant and liquid refrigerant by using centrifugal force, and an evaporator are connected by refrigerant pipes; and a bypass that returns the gas refrigerant obtained through the separation by the gas-liquid separator to a suction side of the compressor. The gas-liquid separator includes a cylindrical container, an inflow pipe, a gas outflow pipe, and a liquid outflow pipe. The main circuit includes a second expansion device provided between the liquid outflow pipe of the gas-liquid separator and the evaporator. The gas refrigerant discharged from the gas outflow pipe of the gas-liquid separator flows into the bypass, and the bypass is provided with a third expansion device.
    Type: Application
    Filed: March 24, 2017
    Publication date: August 27, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kosuke MIYAWAKI, Yoji ONAKA, Osamu MORIMOTO, Hiroyuki OKANO, Takanori KOIKE, Hiroki MARUYAMA
  • Publication number: 20200256589
    Abstract: An air-conditioning system includes a heat source side refrigerant circuit in which a heat source side heat exchanger is provided, a load side heat medium circuit in which a load side heat exchanger is provided, an intermediate heat exchanger, and a heat medium sealing. The heat medium sealing mechanism includes a supply port through which the heat medium and gas flow, the gas being more soluble in the heat medium than air, a discharge port through which the gas pushed by the heat medium is discharged, and a flow straightener that is connected to the load side heat medium circuit in such a manner that, when the gas is supplied, the gas flows from the supply port to the discharge port, and when the heat medium is supplied, the heat medium flows from the supply port to the discharge port.
    Type: Application
    Filed: July 27, 2017
    Publication date: August 13, 2020
    Inventors: Naofumi TAKENAKA, Yuji MOTOMURA, Osamu MORIMOTO
  • Patent number: 10739050
    Abstract: An air-conditioning apparatus includes: a refrigerant circuit in which a compressor, a four-way valve, a heat source-side heat exchanger, an expansion valve and a load-side heat exchanger are connected; and a controller which controls a refrigeration cycle in which refrigerant is circulated in the refrigerant circuit, to switch a flow passage for the refrigerant in accordance with which of a cooling operation, a heating operation and a defrosting operation is performed. The controller includes: a refrigeration-cycle control unit which controls the four-way valve to switch the flow passage of the refrigerant when the operation to be performed is switched from the heating operation to the defrosting operation; and a compressor control unit which sets an operation frequency of the compressor at a value lower than an operation frequency which is applied during the heating operation, when the operation is switched from the heating operation to the defrosting operation.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 11, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuyoshi Shinozaki, Osamu Morimoto, Yuji Motomura
  • Publication number: 20200182564
    Abstract: A heat exchanger includes a plurality of heat transfer tubes, a first header, a second header, and a plurality of fins. The heat exchanger constitutes a portion of a refrigeration cycle circuit in which refrigerant circulates. The second header includes a header pipe. The header pipe has an entrance portion. A bypass pipe is disposed between the entrance portion and the first header and configured to bypass refrigerant. The bypass pipe protrudes into the header pipe to be connected to the header pipe. The bypass pipe is provided with a flow control mechanism configured to control a flow rate of refrigerant.
    Type: Application
    Filed: July 28, 2017
    Publication date: June 11, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoji ONAKA, Takashi MATSUMOTO, Kosuke MIYAWAKI, Hiroyuki OKANO, Takanori KOIKE, Takeshi HATOMURA, Osamu MORIMOTO
  • Publication number: 20200182516
    Abstract: An air-conditioning apparatus that includes a compressor, a flow switching device, an outdoor heat exchange unit, an expansion section and an indoor heat exchanger, which are connected by pipes, in which the outdoor heat exchange unit includes a first outdoor heat exchanger, a first flow rate control device, a second outdoor heat exchanger, a second flow rate control device, a bypass pipe, the second outdoor heat exchanger, the second flow rate control device, a third flow rate control device, and a flow control device.
    Type: Application
    Filed: September 15, 2017
    Publication date: June 11, 2020
    Inventors: Hiroki MARUYAMA, Osamu MORIMOTO, Hiroyuki OKANO, Naofumi TAKENAKA
  • Publication number: 20200064040
    Abstract: A refrigeration cycle apparatus includes a refrigerant circuit, a controller, a bypass pipe, a refrigerant cooler, a second expansion device, and a controller temperature sensor. In a case where a temperature measured by the controller temperature sensor is lower than or equal to a set temperature in a state where an opening degree of the second expansion device is controlled to an instruction opening degree that is lower than or equal to a set opening degree, the controller is configured to perform foreign substance release control where the controller is configured to increase the opening degree of the second expansion device and then is configured to return the opening degree of the second expansion device to the instruction opening degree.
    Type: Application
    Filed: May 15, 2017
    Publication date: February 27, 2020
    Inventors: Takanori KOIKE, Osamu MORIMOTO, Hiroyuki OKANO