Patents by Inventor Osamu Nureki
Osamu Nureki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12258595Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems.Type: GrantFiled: December 27, 2022Date of Patent: March 25, 2025Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTIT JTE OF TECHNOLOGY, UNIVERSITY OF TOKYO, PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Silvana Konermann, Alexandro Trevino, Mark Brigham, Fei Ran, Patrick Hsu, Chie-Yu Lin, Osamu Nureki, Hiroshi Nishimasu, Ryuichiro Ishitani, Feng Zhang
-
Patent number: 12168789Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems. In particular the present invention comprehends engineered new guide architectures and enzymes to be used in optimized Staphylococcus aureus CRISPR-Cas enzyme systems.Type: GrantFiled: January 26, 2023Date of Patent: December 17, 2024Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE, UNIVERSITY OF TOKYOInventors: Feng Zhang, Winston Yan, Osamu Nureki, Kaijie Zheng, Le Cong, Hiroshi Nishimasu, Fei Ran, Yinqing Li
-
Patent number: 12152259Abstract: A mutant SaCas9 protein such as a protein having an amino acid sequence resulting from mutations of glutamic acid at the 782-position to lysine (E782K), leucine at the 800-position to arginine (L800R), asparagine at the 968-position to arginine (N968R), asparagine at the 985-position to alanine (N985A), arginine at the 991-position to alanine (R991A), alanine at the 1021-position to serine (A1021S), threonine at the 927-position to lysine (T927K), lysine at the 929-position to asparagine (K929N), and isoleucine at the 1017-position to phenylalanine (I1017F) in SEQ ID NO: 2 has relaxed restriction on target sequence while maintaining binding ability to guide RNA, and is useful as a tool for gene editing.Type: GrantFiled: November 25, 2022Date of Patent: November 26, 2024Assignees: THE UNIVERSITY OF TOKYO, MODALIS THERAPEUTICS CORPORATIONInventors: Osamu Nureki, Hiroshi Nishimasu, Hisato Hirano, Shohei Kajimoto, Tetsuya Yamagata, Yuanbo Qin, Keith M. Connolly, Iain Thompson
-
Publication number: 20240035007Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems.Type: ApplicationFiled: December 27, 2022Publication date: February 1, 2024Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of Tokyo, President and Fellows of Harvard CollegeInventors: Silvana KONERMANN, Alexandro TREVINO, Mark BRIGHAM, Fei RAN, Patrick HSU, Chie-yu LIN, Osamu NUREKI, Hiroshi NISHIMASU, Ryuichiro ISHITANI, Feng ZHANG
-
Publication number: 20240035006Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.Type: ApplicationFiled: November 14, 2022Publication date: February 1, 2024Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of Tokyo, The United States of America, as Represented by the Secretary Dept of Health and Human ServicesInventors: Takashi Yamano, Hiroshi Nishimasu, Bernd Zetsche, Ian Slaymaker, Yinqing Li, Iana Fedorova, Kira Makarova, Linyi Gao, Eugene Koonin, Feng Zhang, Osamu Nureki
-
Publication number: 20230287373Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRJSPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CR.ISPR-Cas enzyme systems. In particular the present invention comprehends engineered new guide architectures and enzymes to be used in optimized Staphylococcus aureus CRISPR-Cas enzyme systems.Type: ApplicationFiled: January 26, 2023Publication date: September 14, 2023Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, University of TokyoInventors: Feng ZHANG, Winston YAN, Osamu NUREKI, Kaijie ZHENG, Le CONG, Hiroshi NISHIMASU, Fei RAN, Yinqing LI
-
Publication number: 20230279374Abstract: A mutant SaCas9 protein such as a protein having an amino acid sequence resulting from mutations of glutamic acid at the 782-position to lysine (E782K), leucine at the 800-position to arginine (L800R), asparagine at the 968-position to arginine (N968R), asparagine at the 985-position to alanine (N985A), arginine at the 991-position to alanine (R991A), alanine at the 1021-position to serine (A1021S), threonine at the 927-position to lysine (T927K), lysine at the 929-position to asparagine (K929N), and isoleucine at the 1017-position to phenylalanine (I1017F) in SEQ ID NO: 2 has relaxed restriction on target sequence while maintaining binding ability to guide RNA, and is useful as a tool for gene editing.Type: ApplicationFiled: November 25, 2022Publication date: September 7, 2023Applicants: THE UNIVERSITY OF TOKYO, MODALIS THERAPEUTICS CORPORATIONInventors: Osamu NUREKI, Hiroshi NISHIMASU, Hisato HIRANO, Shohei KAJIMOTO, Tetsuya YAMAGATA, Yuanbo QIN, Keith M. CONNOLLY, Iain THOMPSON
-
Patent number: 11702645Abstract: The present invention aims to provide a modified Cas9 protein with relaxed restriction on target sequence while maintaining binding ability to guide RNA, and use thereof. A protein containing the amino acid sequence of SEQ ID NO: 1 in which the 1335-position arginine is mutated into alanine (R1335A), isoleucine (R1335I), methionine (R1335M), threonine (R1335T) or valine (R1335V), the 1111-position leucine is mutated into arginine (L1111R), the 1135-position aspartic acid is mutated into valine (D1135V), the 1218-position glycine is mutated into arginine (G1218R), the 1219-position glutamic acid is mutated into phenylalanine (E1219F), the 1322-position alanine is mutated into arginine (A1322R), and the 1337-position threonine is mutated into arginine (T1337R), and the like.Type: GrantFiled: June 24, 2022Date of Patent: July 18, 2023Assignee: The University of TokyoInventors: Osamu Nureki, Hiroshi Nishimasu, Hisato Hirano
-
Publication number: 20230146664Abstract: Engineered FnCas9 variants are provided that have an enhanced kinetic activity and a broader PAM recognition. The protein engineering methodology introduced specific mutations that stabilized interaction between Cas9 enzyme and target DNA. The enhanced kinetic activity increases NHEJ-mediated editing, owing to more efficient DSB generation potential than WT FnCas9, and the broadened PAM specificity increases the target range of FnCas9 variants. Thus, the scope and accessibility of CRISPR-Cas9 system targets are widened, along with generating robust and highly specific engineered FnCas9 variants.Type: ApplicationFiled: October 25, 2022Publication date: May 11, 2023Applicants: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH, DEPARTMENT OF BIOLOGICAL SCIENCES, GRADUATE SCHOOL OF SCIENCE, THE UNIVERSITY OF TOKYOInventors: Debojyoti CHAKRABORTY, Souvik MAITI, Osamu NUREKI, Hiroshi NISHIMASU, Sundaram ACHARYA, Seichi HIRANO, Hirano Hisato
-
Patent number: 11597919Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems.Type: GrantFiled: October 3, 2019Date of Patent: March 7, 2023Assignees: THE BROAD INSTITUTE INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE, UNIVERSITY OF TOKYOInventors: Silvana Konermann, Alexandro Trevino, Mark Brigham, Fei Ran, Patrick Hsu, Chie-yu Lin, Osamu Nureki, Hiroshi Nishimasu, Ryuichiro Ishitani, Feng Zhang
-
Patent number: 11578312Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems. In particular the present invention comprehends engineered new guide architectures and enzymes to be used in optimized Staphylococcus aureus CRISPR-Cas enzyme systems.Type: GrantFiled: December 12, 2017Date of Patent: February 14, 2023Assignees: THE BROAD INSTITUTE INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE, UNIVERSITY OF TOKYOInventors: Feng Zhang, Winston Yan, Osamu Nureki, Kaijie Zheng, Le Cong, Hiroshi Nishimasu, Fei Ran, Yinqing Li
-
Patent number: 11530396Abstract: A mutant SaCas9 protein such as a protein having an amino acid sequence resulting from mutations of glutamic acid at the 782-position to lysine (E782K), leucine at the 800-position to arginine (L800R), asparagine at the 968-position to arginine (N968R), asparagine at the 985-position to alanine (N985A), arginine at the 991-position to alanine (R991A), alanine at the 1021-position to serine (A1021S), threonine at the 927-position to lysine (T927K), lysine at the 929-position to asparagine (K929N), and isoleucine at the 1017-position to phenylalanine (I1017F) in SEQ ID NO: 2 has relaxed restriction on target sequence while maintaining binding ability to guide RNA, and is useful as a tool for gene editing.Type: GrantFiled: September 5, 2018Date of Patent: December 20, 2022Assignees: THE UNIVERSITY OF TOKYO, MODALIS THERAPEUTICS CORPORATIONInventors: Osamu Nureki, Hiroshi Nishimasu, Hisato Hirano, Shohei Kajimoto, Tetsuya Yamagata, Yuanbo Qin, Keith M. Connolly, Iain Thompson
-
Publication number: 20220348993Abstract: A method for detecting a target nucleic acid fragment in a sample, the method including a step of bringing the sample into contact with a gRNA, a Cas protein, and a substrate nucleic acid fragment, in which the Cas protein expresses nuclease activity after forming a complex with the gRNA and the target nucleic acid fragment, the substrate nucleic acid fragment is labeled with a fluorescent substance and a quenching substance, when the substrate nucleic acid fragment is cleaved by the nuclease activity so that the fluorescent substance is separated from the quenching substance, the fluorescent substance emits fluorescence due to excitation light, and the contact is performed in a reaction space having a volume of 10 aL to 100 pL so that when the target nucleic acid fragment is present in the sample, a tripartite complex is formed, the substrate nucleic acid fragment is cleaved, and the fluorescent substance is separated from the quenching substance; and a step of irradiating the fluorescent substance with theType: ApplicationFiled: July 6, 2020Publication date: November 3, 2022Applicant: RikenInventors: Rikiya Watanabe, Osamu Nureki, Hiroshi Nishimasu
-
Publication number: 20220333090Abstract: The present invention aims to provide a modified Cas9 protein with relaxed restriction on target sequence while maintaining binding ability to guide RNA, and use thereof. A protein containing the amino acid sequence of SEQ ID NO: 1 in which the 1335-position arginine is mutated into alanine (R1335A), isoleucine (R1335I), methionine (R1335M), threonine (R1335T) or valine (R1335V), the 1111-position leucine is mutated into arginine (L1111R), the 1135-position aspartic acid is mutated into valine (D1135V), the 1218-position glycine is mutated into arginine (G1218R), the 1219-position glutamic acid is mutated into phenylalanine (E1219F), the 1322-position alanine is mutated into arginine (A1322R), and the 1337-position threonine is mutated into arginine (T1337R), and the like.Type: ApplicationFiled: June 24, 2022Publication date: October 20, 2022Applicant: The University of TokyoInventors: Osamu NUREKI, Hiroshi NISHIMASU, Hisato HIRANO
-
Patent number: 11371030Abstract: The present invention aims to provide a modified Cas9 protein with relaxed restriction on target sequence while maintaining binding ability to guide RNA, and use thereof. A protein containing the amino acid sequence of SEQ ID NO: 1 in which the 1335-position arginine is mutated into alanine (R1335A), isoleucine (R1335I), methionine (R1335M), threonine (R1335T) or valine (R1335V), the 1111-position leucine is mutated into arginine (L1111R), the 1135-position aspartic acid is mutated into valine (D1135V), the 1218-position glycine is mutated into arginine (G1218R), the 1219-position glutamic acid is mutated into phenylalanine (E1219F), the 1322-position alanine is mutated into arginine (A1322R), and the 1337-position threonine is mutated into arginine (T1337R), and the like.Type: GrantFiled: May 31, 2018Date of Patent: June 28, 2022Assignee: The University of TokyoInventors: Osamu Nureki, Hiroshi Nishimasu, Hisato Hirano
-
Patent number: 11155795Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system.Type: GrantFiled: June 2, 2016Date of Patent: October 26, 2021Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, UNIVERSITY OF TOKYOInventors: Feng Zhang, Osamu Nureki, Hiroshi Nishimasu, Ryuichiro Ishitani
-
Publication number: 20210163907Abstract: A mutant SaCas9 protein such as a protein having an amino acid sequence resulting from mutations of glutamic acid at the 782-position to lysine (E782K), leucine at the 800-position to arginine (L800R), asparagine at the 968-position to arginine (N968R), asparagine at the 985-position to alanine (N985A), arginine at the 991-position to alanine (R991A), alanine at the 1021-position to serine (A1021S), threonine at the 927-position to lysine (T927K), lysine at the 929-position to asparagine (K929N), and isoleucine at the 1017-position to phenylalanine (I1017F) in SEQ ID NO: 2 has relaxed restriction on target sequence while maintaining binding ability to guide RNA, and is useful as a tool for gene editing.Type: ApplicationFiled: September 5, 2018Publication date: June 3, 2021Applicants: THE UNIVERSITY OF TOKYO, MODALIS THERAPEUTICS CORPORATIONInventors: Osamu NUREKI, Hiroshi NISHIMASU, Hisato HIRANO, Shohei KAJIMOTO, Tetsuya YAMAGATA, Yuanbo QIN, Keith M. CONNOLLY, Iain THOMPSON
-
Publication number: 20200277586Abstract: The present invention aims to provide a modified Cas9 protein with relaxed restriction on target sequence while maintaining binding ability to guide RNA, and use thereof. A protein containing the amino acid sequence of SEQ ID NO: 1 in which the 1335-position arginine is mutated into alanine (R1335A), isoleucine (R1335I), methionine (R1335M), threonine (R1335T) or valine (R1335V), the 1111-position leucine is mutated into arginine (L1111R), the 1135-position aspartic acid is mutated into valine (D1135V), the 1218-position glycine is mutated into arginine (G1218R), the 1219-position glutamic acid is mutated into phenylalanine (E1219F), the 1322-position alanine is mutated into arginine (A1322R), and the 1337-position threonine is mutated into arginine (T1337R), and the like.Type: ApplicationFiled: May 31, 2018Publication date: September 3, 2020Applicant: The University of TokyoInventors: Osamu NUREKI, Hiroshi NISHIMASU, Hisato HIRANO
-
Publication number: 20200115687Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems.Type: ApplicationFiled: October 3, 2019Publication date: April 16, 2020Inventors: Silvana KONERMANN, Alexandro TREVINO, Mark BRIGHAM, Fei RAN, Patrick HSU, Chie-yu LIN, Osamu NUREKI, Hiroshi NISHIMASU, Ryuichiro ISHITANI, Feng ZHANG
-
Publication number: 20200080067Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system.Type: ApplicationFiled: July 19, 2019Publication date: March 12, 2020Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of TokyoInventors: Feng ZHANG, Osamu NUREKI, Hiroshi NISHIMASU, Ryuichiro ISHITANI