Patents by Inventor Osamu Torayashiki

Osamu Torayashiki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10411182
    Abstract: A mirror device 200 disclosed herein includes a base 202, a mirror 205, an actuator 206, a fixed comb electrode 208, and a movable comb electrode 207. The movable comb electrode 207 includes: a beam portion 271; a hinge 273 configured to couple the beam portion 271 to the actuator 206 and having lower rigidity than the beam portion 271; a hinge 274 configured to couple the beam portion 271 to the base 202 and having lower rigidity than the beam portion 271; and electrode fingers 272, 272, . . . provided for the beam portion 271 and facing electrode fingers 281, 281, . . . of the fixed comb electrode 208. The movable comb electrode 207 is configured to tilt around a tilt axis B5 that passes through the hinge 274.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: September 10, 2019
    Assignee: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Ryohei Uchino, Osamu Torayashiki, Akio Mugishima
  • Patent number: 10088672
    Abstract: A mirror device includes a mirror, an actuator tilting the mirror, a first hinge coupling the mirror to the actuator, a base, a second hinge coupling the mirror to the base, a movable comb electrode coupled to the mirror, and a fixed comb electrode fixed to the base. The actuator is controlled based on a capacitance between the movable comb electrode and the fixed comb electrode. The movable comb electrode is disposed on a portion of the mirror closer to the second hinge than to the first hinge.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 2, 2018
    Assignee: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Osamu Torayashiki, Ryohei Uchino, Tokiko Misaki
  • Publication number: 20170005257
    Abstract: A mirror device 200 disclosed herein includes a base 202, a mirror 205, an actuator 206, a fixed comb electrode 208, and a movable comb electrode 207. The movable comb electrode 207 includes: a beam portion 271; a hinge 273 configured to couple the beam portion 271 to the actuator 206 and having lower rigidity than the beam portion 271; a hinge 274 configured to couple the beam portion 271 to the base 202 and having lower rigidity than the beam portion 271; and electrode fingers 272, 272, . . . provided for the beam portion 271 and facing electrode fingers 281, 281, . . . of the fixed comb electrode 208. The movable comb electrode 207 is configured to tilt around a tilt axis B5 that passes through the hinge 274.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Ryohei UCHINO, Osamu TORAYASHIKI, Akio MUGISHIMA
  • Publication number: 20160025964
    Abstract: A mirror device 100 includes a mirror 131, an actuator 104 tilting the mirror 131, a first hinge 105 coupling the mirror 131 to the actuator 104, a base 102, a second hinge 106 coupling the mirror 131 to the base 102, a movable comb electrode 107 coupled to the mirror 131, and a fixed comb electrode 108 fixed to the base 102. The actuator 104 is controlled based on a capacitance between the movable comb electrode 107 and the fixed comb electrode 108. The movable comb electrode 107 is disposed on a portion of the mirror 131 closer to the second hinge 106 than to the first hinge 105.
    Type: Application
    Filed: November 25, 2013
    Publication date: January 28, 2016
    Inventors: Osamu TORAYASHIKI, Ryohei UCHINO, Tokiko MISAKI
  • Publication number: 20150051849
    Abstract: A physical quantity sensor 100 includes: first and second oscillators 1, 2 that are supported by a support member 9; first and second detection devices 4, 5 for detecting the oscillations of the first and second oscillators respectively; a sensor element 6 that is provided on the first or second oscillator and has characteristics capable of adsorbing and/or desorbing a measurement object; an elastic device 7 for coupling the first and second oscillators to each other; and a calculation device 8 for determining a frequency at which the vibrating device 3 vibrates the first oscillator. The calculation device determines the frequency so as to maximize the amplitude of the second oscillator, and calculates the mass or concentration of the measurement object on the basis of the ratio of the amplitude of the second oscillator to the amplitude of the first oscillator when the vibrating device vibrates the first oscillator.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Inventor: Osamu Torayashiki
  • Patent number: 8601872
    Abstract: A vibrating gyroscope according to this invention includes a ring-shaped vibrating body 11 having a uniform plane, a leg portion 15 flexibly supporting the ring-shaped vibrating body and having a fixed end, a fixed potential electrode 16, and a plurality of electrodes 13a, 13b, . . . , 13h formed on the plane with a piezoelectric film sandwiched between an upper-layer metallic film and a lower-layer metallic film in a thickness direction thereof. In this case, in a representative example shown in FIG. 1, when one of driving electrodes 13a for exciting a primary vibration of the ring-shaped vibrating body 11 in a vibration mode of cos N? is set as a reference driving electrode, the plurality of remaining electrodes 13b, . . . , 13h are disposed at specific positions. Such disposition allows this vibrating gyroscope to detect a uniaxial to triaxial angular velocity by adopting a secondary vibration detector inclusive of an out-of-plane vibration mode.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 10, 2013
    Assignee: SUMITOMO PRECISION PRODUCTS Co., Ltd.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Patent number: 8381590
    Abstract: A vibrating gyroscope comprises a ring-shaped vibrating body (11) a leg portion (15) flexibly supporting the body (11) and having a fixed end, a fixed potential electrode (16), and a plurality of electrodes (13a-13d) with a piezoelectric film sandwiched between an upper and a lower-layer metallic film in a thickness direction thereof. When N is a natural number of 2 or more, the plurality of electrodes (13a-13d) include driving electrodes (13a) for a primary vibration in a vibration mode of cosN?, which are each disposed (360/N)° apart from each other in a circumferential direction, first detection electrodes (13b) and second detection electrodes (13d) for detecting a secondary vibration generated when an angular velocity is applied to the body (11), which are each disposed in a certain region related to the driving electrode (13a) Each of the electrodes is also disposed in a certain region of the body (11).
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 26, 2013
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Patent number: 8375792
    Abstract: A vibrating gyroscope according to this invention includes a ring-shaped vibrating body 11 having a uniform plane, a leg portion 15 flexibly supporting the ring-shaped vibrating body and having a fixed end, a fixed potential electrode 16, and a plurality of electrodes 13a, 13b, . . . , 13f formed on the plane with a piezoelectric film sandwiched between an upper-layer metallic film and a lower-layer metallic film in a thickness direction thereof. In this case, in a representative example shown in FIG. 1, when one of driving electrodes 13a for exciting a primary vibration of the ring-shaped vibrating body 11 in a vibration mode of cos N? is set as a reference driving electrode, the plurality of remaining electrodes 13b, . . . , 13f are disposed at specific positions.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Publication number: 20110041606
    Abstract: A vibrating gyroscope according to this invention includes a ring-shaped vibrating body 11 having a uniform plane, a leg portion 15 flexibly supporting the ring-shaped vibrating body and having a fixed end, a fixed potential electrode 16, and a plurality of electrodes 13a, 13b, . . . , 13h formed on the plane with a piezoelectric film sandwiched between an upper-layer metallic film and a lower-layer metallic film in a thickness direction thereof. In this case, in a representative example shown in FIG. 1, when one of driving electrodes 13a for exciting a primary vibration of the ring-shaped vibrating body 11 in a vibration mode of cos N? is set as a reference driving electrode, the plurality of remaining electrodes 13b, . . . , 13h are disposed at specific positions. Such disposition allows this vibrating gyroscope to detect a uniaxial to triaxial angular velocity by adopting a secondary vibration detector inclusive of an out-of-plane vibration mode.
    Type: Application
    Filed: February 20, 2009
    Publication date: February 24, 2011
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Publication number: 20110023601
    Abstract: A vibrating gyroscope according to this invention includes a ring-shaped vibrating body 11 having a uniform plane, a leg portion 15 flexibly supporting the ring-shaped vibrating body and having a fixed end, a fixed potential electrode 16, and a plurality of electrodes 13a, 13b, . . . , 13f formed on the plane with a piezoelectric film sandwiched between an upper-layer metallic film and a lower-layer metallic film in a thickness direction thereof. In this case, in a representative example shown in FIG. 1, when one of driving electrodes 13a for exciting a primary vibration of the ring-shaped vibrating body 11 in a vibration mode of cos N? is set as a reference driving electrode, the plurality of remaining electrodes 13b, . . . , 13f are disposed at specific positions.
    Type: Application
    Filed: February 20, 2009
    Publication date: February 3, 2011
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Publication number: 20100281976
    Abstract: A vibrating gyroscope comprises a ring-shaped vibrating body (11) a leg portion (15) flexibly supporting the body (11) and having a fixed end, a fixed potential electrode (16), and a plurality of electrodes (13a-13d) with a piezoelectric film sandwiched between an upper and a lower-layer metallic film in a thickness direction thereof. When N is a natural number of 2 or more, the plurality of electrodes (13a-13d) include driving electrodes (13a) for a primary vibration in a vibration mode of cosN?, which are each disposed (360/N)° apart from each other in a circumferential direction, first detection electrodes (13b) and second detection electrodes (13d) for detecting a secondary vibration generated when an angular velocity is applied to the body (11), which are each disposed in a certain region related to the driving electrode (13a) Each of the electrodes is also disposed in a certain region of the body (11).
    Type: Application
    Filed: November 26, 2008
    Publication date: November 11, 2010
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Takashi Ikeda, Hiroshi Nishida, Osamu Torayashiki, Mitsuhiko Takemura, Tsuyoshi Fujimura, Ryuta Araki, Takafumi Moriguchi, Nobutaka Teshima, Yasuyuki Hirata
  • Patent number: 7696622
    Abstract: A MEMS device including a getter film formed inside a hermetic chamber provides stable performance of the MEMS device by electrically stabilizing the getter film. The MEMS device includes a movable portion and a fixed portion formed inside the hermetic chamber. The hermetic chamber is formed by a base material of the MEMS device and glass substrates and having a cavity and cavities made therein. A part of any continuous getter film formed inside the hermetic chamber connects to only one of any one or a plurality of predetermined electrical potentials of the fixed portion and a ground potential of the fixed portion through the base material of the MEMS device.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 13, 2010
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Tsuyoshi Takemoto, Hiroshi Nishida, Osamu Torayashiki, Takashi Ikeda, Ryuta Araki
  • Patent number: 7637156
    Abstract: A vibrator 10, which is formed in a silicon wafer 1 by means of MEMS technique, has eight beam portions (beams) 12 supported at a central portion 11 and extending in the radial direction while mutually keeping the same angle and has a ring portion 13 connected to the eight beam portions 12. Outside the ring portion 13, eight electrodes 21a to 21h for electrostatic actuation, capacitance detection, or the like are spaced uniformly with a gap 22 created between the ring portion 13 and the electrodes 21a to 21h. Inside the ring portion 13, sixteen electrodes 23 for frequency adjustment are spaced uniformly with a gap 24 created between the ring portion 13 and the electrodes 23.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: December 29, 2009
    Assignees: Sumitomo Precision Products, Atlantic Inertial Systems Limited
    Inventors: Ryuta Araki, Osamu Torayashiki, Toru Kitamura, Hiroshi Kawasaki, Tsuyoshi Takemoto, Koji Nakamura, Christopher P. Fell, Kevin Townsend, Ian Sturland
  • Publication number: 20090001565
    Abstract: A MEMS device including a getter film formed inside a hermetic chamber provides stable performance of the MEMS device by electrically stabilizing the getter film. The MEMS device includes a movable portion and a fixed portion formed inside the hermetic chamber. The hermetic chamber is formed by a base material of the MEMS device and glass substrates and 32 having a cavity and cavities made therein. A part of any continuous getter film formed inside the hermetic chamber connects to only one of any one or a plurality of predetermined electrical potentials of the fixed portion and a ground potential of the fixed portion through the base material of the MEMS device.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Inventors: Tsuyoshi Takemoto, Hiroshi Nishida, Osamu Torayashiki, Takashi Ikeda, Ryuta Araki
  • Publication number: 20070220972
    Abstract: A vibrator 10, which is formed in a silicon wafer 1 by means of MEMS technique, has eight beam portions (beams) 12 supported at a central portion 11 and extending in the radial direction while mutually keeping the same angle and has a ring portion 13 connected to the eight beam portions 12. Outside the ring portion 13, eight electrodes 21a to 21h for electrostatic actuation, capacitance detection, or the like are spaced uniformly with a gap 22 created between the ring portion 13 and the electrodes 21a to 21h. Inside the ring portion 13, sixteen electrodes 23 for frequency adjustment are spaced uniformly with a gap 24 created between the ring portion 13 and the electrodes 23.
    Type: Application
    Filed: July 12, 2005
    Publication date: September 27, 2007
    Applicant: BAE STSTEMS PLC
    Inventors: Ryuta Araki, Osamu Torayashiki, Toru Kitamura, Hiroshi Kawasaki, Tsuyoshi Takemoto, Koji Nakamura, Christopher Fell, Kevin Townsend, Ian Sturland