Patents by Inventor Osamu Usaka

Osamu Usaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240401215
    Abstract: A method for producing an electrode catalyst includes a nanowire synthesis process of synthesizing metal nanowires, and a supporting process of supporting the metal nanowires on a carbon support. The supporting process is performed in a manner so that, in a first suspension containing the carbon support and the metal nanowires, while the metal nanowires are cut into short metal nanowires each having a length equal to or less than the particle diameter of the carbon support, the short metal nanowires are attached to the carbon support.
    Type: Application
    Filed: May 22, 2024
    Publication date: December 5, 2024
    Inventors: Osamu USAKA, Hiroshi MATSUMORI, Hiroaki KOMODA
  • Patent number: 6905998
    Abstract: In a reforming catalyst apparatus provided with a reforming catalyst for forming a hydrogen rich reformed gas by a reforming reaction of the fuel with water, the catalyst performance can be recovered by heating the catalyst within a temperature ranging from 500° C. to 800° C. while supplying said fuel and air to the catalyst. This method allows recovery of the catalyst performance without demounting the catalyst from the reforming catalyst apparatus and allows providing the reforming catalyst with a long service life.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 14, 2005
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Mitsubishi Gas Chemical Co., Inc.
    Inventors: Takahiro Naka, Osamu Usaka, Shoji Isobe, Yasushi Hiramatsu, Mikio Yoneoka
  • Patent number: 6677068
    Abstract: A catalyst for selective oxidation of carbon monoxide present in a hydrogen-containing gas is provided in which the catalyst comprises ruthenium supported on an alumina hydrate. This catalyst has a high selective oxidation activity to carbon monoxide. A carbon monoxide elimination method using this catalyst is also provided. In this method, to a gas containing at least hydrogen and carbon monoxide and being richer in the hydrogen than the carbon monoxide on the basis of volume, oxygen is added in an amount necessary for oxidizing at least part of carbon monoxide present in that gas, and thereafter the gas to which the oxygen has been added is brought into contact with the catalyst described above. Also provided is a solid polymer electrolyte fuel cell system that utilizes this method.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: January 13, 2004
    Assignees: N.E. Chemcat Corporation, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takashi Itoh, Katsumi Kurabayashi, Takahiro Naka, Masako Takayama, Osamu Usaka, Shoji Isobe
  • Publication number: 20030203813
    Abstract: A catalyst for selective oxidation of carbon monoxide present in a hydrogen-containing gas is provided in which the catalyst comprises ruthenium supported on an alumina hydrate. This catalyst has a high selective oxidation activity to carbon monoxide. A carbon monoxide elimination method using this catalyst is also provided. In this method, to a gas containing at least hydrogen and carbon monoxide and being richer in the hydrogen than the carbon monoxide on the basis of volume, oxygen is added in an amount necessary for oxidizing at least part of carbon monoxide present in that gas, and thereafter the gas to which the oxygen has been added is brought into contact with the catalyst described above. Also provided is a solid polymer electrolyte fuel cell system that utilizes this method.
    Type: Application
    Filed: May 2, 2003
    Publication date: October 30, 2003
    Applicants: N. E. Chemcat Corporation, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takashi Itoh, Katsumi Kurabayashi, Takahiro Naka, Masako Takayama, Osamu Usaka, Shoji Isobe
  • Patent number: 6576208
    Abstract: A catalyst for selective oxidation of carbon monoxide present in a hydrogen-containing gas is provided in which the catalyst comprises ruthenium supported on an alumina hydrate. This catalyst has a high selective oxidation activity to carbon monoxide. A carbon monoxide elimination method using this catalyst is also provided. In this method, to a gas containing at least hydrogen and carbon monoxide and being richer in the hydrogen than the carbon monoxide on the basis of volume, oxygen is added in an amount necessary for oxidizing at least part of carbon monoxide present in that gas, and thereafter the gas to which the oxygen has been added is brought into contact with the catalyst described above. Also provided is a solid polymer electrolyte fuel cell system that utilizes this method.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: June 10, 2003
    Assignees: N.E. Chemcat Corporation, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takashi Itoh, Katsumi Kurabayashi, Takahiro Naka, Masako Takayama, Osamu Usaka, Shoji Isobe
  • Patent number: 6562499
    Abstract: A catalyst for selectively oxidizing carbon monoxide in a hydrogen-containing gas comprises an alumina hydrate carrier and at least platinum supported thereon. With an aluminum hydrate as a carrier, the catalyst is resistant to deactivation which would be caused by an oxygen-containing hydrocarbon in a hydrogen-rich gas. The method for selectively removing carbon monoxide comprises the steps of adding oxygen to a hydrogen-rich gas containing carbon monoxide, in an amount necessary to oxidize at least part of carbon monoxide, and bringing the resulting mixture into contact with the catalyst for selectively oxidizing carbon monoxide. The solid polymer electrolyte-type fuel cell system utilizes the above method for selectively removing carbon monoxide.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 13, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takahiro Naka, Masako Takayama, Osamu Usaka, Shoji Isobe, Takashi Ito, Katsumi Kurabayashi
  • Publication number: 20020187890
    Abstract: In a reforming catalyst apparatus provided with a reforming catalyst for forming a hydrogen rich reformed gas by a reforming reaction of the fuel with water, the catalyst performance can be recovered by heating the catalyst within a temperature ranging from 500° C. to 800° C. while supplying said fuel and air to the catalyst. This method allows recovery of the catalyst performance without demounting the catalyst from the reforming catalyst apparatus and allows providing the reforming catalyst with a long service life.
    Type: Application
    Filed: March 26, 2002
    Publication date: December 12, 2002
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Takahiro Naka, Osamu Usaka, Shoji Isobe, Yasushi Hiramatsu, Mikio Yoneoka