Patents by Inventor Oscar Agazzi

Oscar Agazzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8363683
    Abstract: Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment, the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 29, 2013
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20100310024
    Abstract: Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment, the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
    Type: Application
    Filed: August 16, 2010
    Publication date: December 9, 2010
    Applicant: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Patent number: 7835387
    Abstract: Digital signal processing based methods and systems for receiving electrical and/or optical data signals include electrical receivers, optical receivers, parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a single path receiver. Alternatively, the present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 16, 2010
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Patent number: 7778286
    Abstract: Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment, the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20090310665
    Abstract: Digital signal processing based methods and systems for receiving electrical and/or optical data signals include electrical receivers, optical receivers, parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a single path receiver. Alternatively, the present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal.
    Type: Application
    Filed: July 1, 2009
    Publication date: December 17, 2009
    Applicant: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Patent number: 7564866
    Abstract: Digital signal processing based methods and systems for receiving optical data signals include parallel receivers, multi-channel receivers, timing recovery schemes, equalization schemes, and multi-path parallel receivers in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: July 21, 2009
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20080101510
    Abstract: A DSP based SERDES performs compensation operations to support high speed de-serialization. A receiver section of the DSP based SERDES includes one or more ADCs and DSPs. The ADC operates to sample (modulated) analog serial data and to produce digitized serial data (digital representation of the modulated analog serial data). The DSP communicatively couples to the ADC and receives the digitized serial data. Based upon the known characteristics of the digitized serial data and the digitized serial data itself, the DSP determines compensation operations to be performed upon the serial data to compensate for inadequacies of the receiver and/or channel response. These compensation operations may be (1) performed on the analog serial data before digitization by the ADC; (2) applied to the ADC to modify the operation of the ADC; and/or (3) performed on the digitized serial data by the DSP or another device.
    Type: Application
    Filed: January 2, 2008
    Publication date: May 1, 2008
    Applicant: Broadcom Corporation
    Inventor: Oscar Agazzi
  • Publication number: 20080063401
    Abstract: Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel.
    Type: Application
    Filed: May 24, 2007
    Publication date: March 13, 2008
    Inventor: Oscar Agazzi
  • Publication number: 20080049826
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitters partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: August 28, 2007
    Publication date: February 28, 2008
    Inventors: Oscar Agazzi, John Creigh, Mehdi Hatamian, David Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20070263673
    Abstract: Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment, the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
    Type: Application
    Filed: July 16, 2007
    Publication date: November 15, 2007
    Applicant: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20070242739
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 18, 2007
    Inventors: Oscar Agazzi, John Creigh, Mehdi Hatamian, David Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20070195875
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: March 20, 2007
    Publication date: August 23, 2007
    Inventors: Oscar Agazzi, John Creigh, Mehdi Hatamian, David Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20070183540
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: March 20, 2007
    Publication date: August 9, 2007
    Inventors: Oscar Agazzi, John Creigh, Mehdi Hatamian, David Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20070172012
    Abstract: A method and a timing recovery system for generating a set of clock signals in a system which includes a set of subsystems. Each of the subsystems includes an analog section. The set of clock signals includes a set of sampling clock signals. Each of the analog sections operates in accordance with a corresponding one of the sampling clock signals. For each of the sampling clock signals, a phase error is generated from a corresponding phase detector. The phase errors are filtered by a set of corresponding loop filters. The filtered phase errors are provided to a set of corresponding oscillators to generate phase control signals. The phase control signals are provided to a set of corresponding phase selectors to generate the sampling clock signals.
    Type: Application
    Filed: October 3, 2006
    Publication date: July 26, 2007
    Inventor: Oscar Agazzi
  • Patent number: 7245638
    Abstract: Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: July 17, 2007
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20070133722
    Abstract: A system includes a time-interleaved device. An equalizer effectively can apply different equalization to different interleaved channels. For convenience, these equalizers will be referred to as multi-channel equalizers. In one aspect, an apparatus includes an interleaved device having M interleaved channels, and a multi-channel equalizer coupled to the interleaved device. The multi-channel equalizer is capable of applying a different equalization to different interleaved channels, thus compensating for channel-dependent impairments.
    Type: Application
    Filed: October 2, 2006
    Publication date: June 14, 2007
    Inventors: Oscar Agazzi, Diego Crivelli, Hugo Carrer, Mario Hueda, German Luna
  • Publication number: 20070133719
    Abstract: A receiver (e.g., for a 10 G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
    Type: Application
    Filed: November 14, 2006
    Publication date: June 14, 2007
    Applicant: ClariPhy Communications, Inc.
    Inventors: OSCAR AGAZZI, DIEGO CRIVELLI, HUGO CARRER, MARIO HUEDA, GERMAN LUNA, CARL GRACE
  • Publication number: 20070092263
    Abstract: Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel.
    Type: Application
    Filed: December 7, 2006
    Publication date: April 26, 2007
    Inventor: Oscar Agazzi
  • Publication number: 20070047968
    Abstract: Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel.
    Type: Application
    Filed: October 24, 2006
    Publication date: March 1, 2007
    Inventor: Oscar Agazzi
  • Publication number: 20060245487
    Abstract: A method and a system for providing an input signal from a multiple decision feedback equalizer to a decoder based on a tail value and a subset of coefficient values received from a decision-feedback equalizer. A set of pre-computed values based on the subset of coefficient values is generated. Each of the pre-computed values is combined with the tail value to generate a tentative sample. One of the tentative samples is selected as the input signal to the decoder. In one aspect of the system, tentative samples are saturated and then stored in a set of registers before being outputted to a multiplexer which selects one of the tentative samples as the input signal to the decoder.
    Type: Application
    Filed: October 25, 2005
    Publication date: November 2, 2006
    Inventors: Oscar Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian