Patents by Inventor Oscar Andres Cabada Kriebel

Oscar Andres Cabada Kriebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11526958
    Abstract: Disclosed herein are methods and system for redistributing bulk material across a geographical area. A method for providing bulk material for a wellbore operation, the method comprising: forming a logistical model database to determine bulk material required for an at least one wellsite located in a geographical area; acquiring bulk material from a distribution center; verifying the bulk material acquired; and transporting bulk material for the wellbore operation. A method for providing bulk material for a wellbore operation, the method comprising: determining demand for bulk material across a geographical area; collecting data throughout a life cycle of bulk material; transmitting collected data to an off-site network comprising an adaptive machine; analyzing collected data via the off-site network thereby producing an output; providing bulk material to a wellsite based on output.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 13, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Sumit Bhat, Stanley V. Stephenson, Oscar Andres Cabada Kriebel
  • Patent number: 11377943
    Abstract: Aspects of the subject technology relate to systems and methods for pumping multiple wellbores from a common pumping source. A fluid pump of known operating pump capacity can be selected. The pump can be fluidly connected to a common pumping source that is fluidly connected with each of a plurality of cased wellbores in a subterranean formation for providing pumped fracturing fluid to each of the wellbores. Each of the plurality of wellbores can have at least one perforation through a casing of the wellbore with a known rate range within which fracturing fluid is required to be provided to the perforation to successfully fracture the subterranean formation outside the perforation, through the perforation. Further, the wellbores can be configured so that the common pumping source provides fracturing fluid to each of the perforations within the known rate range of the respective perforation to successfully fracture the subterranean formation.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 5, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Oscar Andres Cabada Kriebel, Kurt Rohrbough Harpold, Jr., Ronald Glen Dusterhoft, Jonathan Smith, Ubong Inyang
  • Patent number: 11377942
    Abstract: Aspects of the subject technology relate to systems and methods for pumping a wellbore with a pump operating in a damage avoidance mode during a hydraulic fracturing job. A fluid pump of known operating pump capacity measurable in barrels per minute is selected. The pump is fluidly connected with each of a cased wellbore in a subterranean formation for providing fracturing fluid to the wellbore. The wellbore has at least one perforation through a casing of the wellbore that has a known rate range within which fracturing fluid is required to successfully fracture the subterranean formation outside the perforation through the perforation. The pump is configured to provide fracturing fluid to each perforation within the known rate range of the respective perforation to successfully fracture the subterranean formation outside of the perforation while operating the pump in a damage avoidance mode.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 5, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Oscar Andres Cabada Kriebel, Kurt Rohrbough Harpold, Jr., Ronald Glen Dusterhoft, Jonathan Smith, Ubong Inyang
  • Patent number: 11149532
    Abstract: Aspects of the subject technology relate to systems and methods for pumping multiple wellbores to form and stabilize fractures during a fracturing job. A fluid pump of known operating pump capacity measurable in barrels per minute is selected. The pump is fluidly connected with each of a plurality of cased wellbores in a subterranean formation for providing fracturing fluid to each of the wellbores. The plurality of wellbores each have at least one perforation through a casing of the wellbore that has a known rate range within which fracturing fluid is required to successfully fracture the subterranean formation outside the perforation through the perforation. The pump is configured to provide fracturing fluid to each of the perforations within the known rate range of the respective perforation to successfully fracture the subterranean formation outside of the perforation.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: October 19, 2021
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Oscar Andres Cabada Kriebel, Kurt Rohrbough Harpold, Jr., Ronald Glen Dusterhoft, Jonathan Smith, Ubong Inyang
  • Publication number: 20210010363
    Abstract: Aspects of the subject technology relate to systems and methods for pumping multiple wellbores from a common pumping source. A fluid pump of known operating pump capacity can be selected. The pump can be fluidly connected to a common pumping source that is fluidly connected with each of a plurality of cased wellbores in a subterranean formation for providing pumped fracturing fluid to each of the wellbores. Each of the plurality of wellbores can have at least one perforation through a casing of the wellbore with a known rate range within which fracturing fluid is required to be provided to the perforation to successfully fracture the subterranean formation outside the perforation, through the perforation. Further, the wellbores can be configured so that the common pumping source provides fracturing fluid to each of the perforations within the known rate range of the respective perforation to successfully fracture the subterranean formation.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 14, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Oscar Andres Cabada KRIEBEL, Kurt Rohrbough HARPOLD, JR., Ronald Glen DUSTERHOFT, Jonathan SMITH, Ubong INYANG
  • Publication number: 20210010362
    Abstract: Aspects of the subject technology relate to systems and methods for pumping a wellbore with a pump operating in a damage avoidance mode during a hydraulic fracturing job. A fluid pump of known operating pump capacity measurable in barrels per minute is selected. The pump is fluidly connected with each of a cased wellbore in a subterranean formation for providing fracturing fluid to the wellbore. The wellbore has at least one perforation through a casing of the wellbore that has a known rate range within which fracturing fluid is required to successfully fracture the subterranean formation outside the perforation through the perforation. The pump is configured to provide fracturing fluid to each perforation within the known rate range of the respective perforation to successfully fracture the subterranean formation outside of the perforation while operating the pump in a damage avoidance mode.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 14, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Oscar Andres Cabada KRIEBEL, Kurt Rohrbough HARPOLD, Ronald Glen DUSTERHOFT, Jonathan SMITH, Ubong INYANG
  • Publication number: 20210010361
    Abstract: Aspects of the subject technology relate to systems and methods for pumping multiple wellbores to form and stabilize fractures during a fracturing job. A fluid pump of known operating pump capacity measurable in barrels per minute is selected. The pump is fluidly connected with each of a plurality of cased wellbores in a subterranean formation for providing fracturing fluid to each of the wellbores. The plurality of wellbores each have at least one perforation through a casing of the wellbore that has a known rate range within which fracturing fluid is required to successfully fracture the subterranean formation outside the perforation through the perforation. The pump is configured to provide fracturing fluid to each of the perforations within the known rate range of the respective perforation to successfully fracture the subterranean formation outside of the perforation.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 14, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Oscar Andres Cabada KRIEBEL, Kurt Rohrbough HARPOLD, JR., Ronald Glen DUSTERHOFT, Jonathan SMITH, Ubong INYANG
  • Publication number: 20200410622
    Abstract: Disclosed herein are methods and system for redistributing bulk material across a geographical area. A method for providing bulk material for a wellbore operation, the method comprising: forming a logistical model database to determine bulk material required for an at least one wellsite located in a geographical area; acquiring bulk material from a distribution center; verifying the bulk material acquired; and transporting bulk material for the wellbore operation. A method for providing bulk material for a wellbore operation, the method comprising: determining demand for bulk material across a geographical area; collecting data throughout a life cycle of bulk material; transmitting collected data to an off-site network comprising an adaptive machine; analyzing collected data via the off-site network thereby producing an output; providing bulk material to a wellsite based on output.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Sumit Bhat, Stanley V. Stephenson, Oscar Andres Cabada Kriebel