Patents by Inventor Oscar Custance

Oscar Custance has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7975316
    Abstract: A frequency shift ?f obtained by an FM-AFM can be expressed by a simple linear coupling of a ?fLR derived from a long-range interaction force and a ?fSR derived from a short-range interaction force. Given this factor, a ?f curve on an atomic defect and a ?f curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference ?f curve of those two curves is obtained (S3). Since the difference ?f curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the ?f curve can be narrowed, the measurement time can be shortened, and since the conversion from the ?f curve into F curve is required only once, the computational time can also be shortened.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: July 5, 2011
    Assignees: Osaka University, Shimadzu Corporation
    Inventors: Masahiro Ota, Noriaki Oyabu, Masayuki Abe, Oscar Custance, Yoshiaki Sugimoto, Seizo Morita
  • Patent number: 7703314
    Abstract: The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a).
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 27, 2010
    Assignees: Shimadzu Corporation, Osaka University
    Inventors: Masayuki Abe, Masahiro Ota, Yoshiaki Sugimoto, Kenichi Morita, Noriaki Oyabu, Seizo Morita, Oscar Custance
  • Publication number: 20100071099
    Abstract: A frequency shift ?f obtained by an FM-AFM can be expressed by a simple linear coupling of a ?fLR derived from a long-range interaction force and a ?fSR derived from a short-range interaction force. Given this factor, a ?f curve on an atomic defect and a ?f curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference ?f curve of those two curves is obtained (S3). Since the difference ?f curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the ?f curve can be narrowed, the measurement time can be shortened, and since the conversion from the ?f curve into F curve is required only once, the computational time can also be shortened.
    Type: Application
    Filed: January 7, 2008
    Publication date: March 18, 2010
    Inventors: Masahiro Ota, Noriaki Oyabu, Masayuki Abe, Oscar Custance, Yoshiaki Sugimoto, Seizo Morita
  • Publication number: 20070272005
    Abstract: The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a).
    Type: Application
    Filed: May 24, 2007
    Publication date: November 29, 2007
    Applicants: SHIMADZU CORPORATION, OSAKA UNIVERSITY
    Inventors: Masayuki Abe, Masahiro Ota, Yoshiaki Sugimoto, Kenichi Morita, Noriaki Oyabu, Seizo Morita, Oscar Custance