Patents by Inventor Osman Asif Malik

Osman Asif Malik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11537637
    Abstract: A method may include obtaining a first matrix that represents data in a data set and obtaining a number of clusters into which the data is to be grouped. The method may further include constructing a second matrix using the first matrix and the number of clusters. The second matrix may represent a formulation of a first optimization problem in a framework of a second optimization problem. The method may further include solving the second optimization problem using the second matrix to generate a solution of the second optimization problem and mapping the solution of the second optimization problem into a first solution matrix that represents a solution of the first optimization problem. The method may further include grouping the data into multiple data clusters using the first solution matrix. A number of the multiple data clusters may be equal to the number of clusters.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: December 27, 2022
    Assignee: FUJITSU LIMITED
    Inventors: Osman Asif Malik, Hayato Ushijima, Avradip Mandal, Indradeep Ghosh, Arnab Roy
  • Patent number: 11386507
    Abstract: A computer-implemented method for analyzing a time-varying graph is provided. The time-varying graph includes nodes representing elements in a network, edges representing transactions between elements, and data associated with the nodes and the edges. The computer-implemented method includes constructing, using a processor, adjacency and feature matrices describing each node and edge of each time-varying graph for stacking into an adjacency tensor and describing the data of each time-varying graph for stacking into a feature tensor, respectively. The adjacency and feature tensors are partitioned into adjacency and feature training tensors and into adjacency and feature validation tensors, respectively. An embedding model and a prediction model are created using the adjacency and feature training tensors. The embedding and prediction models are validated using the adjacency and feature validation tensors to identify an optimized embedding-prediction model pair.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: July 12, 2022
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Trustees of Tufts College, RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Lior Horesh, Osman Asif Malik, Shashanka Ubaru, Misha E. Kilmer, Haim Avron
  • Publication number: 20220083567
    Abstract: A method may include obtaining a first matrix that represents data in a data set and obtaining a number of clusters into which the data is to be grouped. The method may further include constructing a second matrix using the first matrix and the number of clusters. The second matrix may represent a formulation of a first optimization problem in a framework of a second optimization problem. The method may further include solving the second optimization problem using the second matrix to generate a solution of the second optimization problem and mapping the solution of the second optimization problem into a first solution matrix that represents a solution of the first optimization problem. The method may further include grouping the data into multiple data clusters using the first solution matrix. A number of the multiple data clusters may be equal to the number of clusters.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Applicant: FUJITSU LIMITED
    Inventors: Osman Asif MALIK, Hayato USHIJIMA, Avradip MANDAL, Indradeep GHOSH, Arnab ROY
  • Publication number: 20210090182
    Abstract: A computer-implemented method for analyzing a time-varying graph is provided. The time-varying graph includes nodes representing elements in a network, edges representing transactions between elements, and data associated with the nodes and the edges. The computer-implemented method includes constructing, using a processor, adjacency and feature matrices describing each node and edge of each time-varying graph for stacking into an adjacency tensor and describing the data of each time-varying graph for stacking into a feature tensor, respectively. The adjacency and feature tensors are partitioned into adjacency and feature training tensors and into adjacency and feature validation tensors, respectively. An embedding model and a prediction model are created using the adjacency and feature training tensors. The embedding and prediction models are validated using the adjacency and feature validation tensors to identify an optimized embedding-prediction model pair.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Lior Horesh, Osman Asif Malik, Shashanka Ubaru, Misha E. Kilmer, Haim Avron