Patents by Inventor Otto Z. Zhou

Otto Z. Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950944
    Abstract: Compact x-ray devices, systems, and methods for capturing in tomosynthesis, two-dimensional radiography, fluoroscopy, and stereotactic imaging modes. In some embodiments, the compact x-ray imaging system includes an x-ray source array including spatially distributed x-ray focal spots and a digital area x-ray detector. In some embodiments, the imaging system includes an electronic switching device configured to alternate the imaging mode of the system. In some embodiments, the imaging system includes a mechanical support configured to enable a position and orientation of the x-ray source array and the digital area x-ray detector to be adjusted such that both upper and lower extremities of a patient can be imaged using various imaging modes while a position of the plurality of spatially distributed x-ray focal spots with respect to the digital area x-ray detector remains unchanged.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: April 9, 2024
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Otto Z. Zhou, Jianping Lu, Yueh Zenas Lee, Christina Inscoe, Alex Billingsley
  • Publication number: 20220148252
    Abstract: Systems and methods for generating multi-view synthetic dental radiographs for intraoral tomosynthesis. In some embodiments, the method includes generating or receiving two-dimensional (2D) projection images, manipulating pixel values contained in each of the plurality of 2D projection images, reconstructing a three-dimensional (3D) image space from information available in the plurality of 2D projection images, the 3D image space comprising voxel values, manipulating the voxel values in the 3D image space using one or more tunable weighting algorithms that can be adjusted to emphasize one or more features of interest of each image in the 3D image space, generating a plurality of synthetic dental radiographs from multiple views using information available in the 3D image space, and displaying one or more of the synthetic dental radiographs. In some embodiments, the system includes a display in communication with an image processing system comprising one or more processors for performing the method.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 12, 2022
    Inventors: Connor Puett, Otto Z. Zhou, Jianping Lu, Christina Inscoe
  • Publication number: 20220142591
    Abstract: Multi-modality dental x-ray imaging devices, systems, and methods. In some embodiments, an x-ray imaging system is operable in cone-beam computed tomography, two-dimensional intraoral x-ray, and intraoral tomosynthesis imaging modes. In some embodiments, the device includes a rotatable gantry, an x-ray source array attached to the rotatable gantry and including x-ray focal spots, a digital area x-ray detector attached to the rotatable gantry, an intraoral sensor, an adjustable collimation assembly positioned between the x-ray source array and the subject and configured to limit x-ray radiation to a surface of the intraoral sensor or the digital area x-ray detector depending on the selected imaging mode, and a control unit including one or more processors, the control unit configured to operate the x-ray imaging system in one of the imaging modes.
    Type: Application
    Filed: November 16, 2021
    Publication date: May 12, 2022
    Inventors: Otto Z. Zhou, Jianping Lu
  • Publication number: 20220110595
    Abstract: An intraoral tomosynthesis x-ray imaging device, system, and method with an interchangeable collimator. The intraoral tomosynthesis x-ray imaging device includes an x-ray source array including one or more spatially distributed focal spots and a detachable collimation assembly to provide rectangular or circular radiation fields. The intraoral tomosynthesis x-ray imaging device further includes a digital intraoral x-ray detector. In some embodiments, the x-ray source array is configured to produce either a scanning x-ray beam illuminating an object from different viewing angles without mechanically moving the x-ray source array for tomosynthesis, or a single two-dimensional radiograph.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 14, 2022
    Applicant: Surround Medical Systems, Inc.
    Inventors: Captain Capo, Andrew Tucker, Julianna Burney, Otto Z. Zhou, Jianping LU
  • Publication number: 20210353238
    Abstract: Compact x-ray devices, systems, and methods for capturing in tomosynthesis, two-dimensional radiography, fluoroscopy, and stereotactic imaging modes. In some embodiments, the compact x-ray imaging system includes an x-ray source array including spatially distributed x-ray focal spots and a digital area x-ray detector. In some embodiments, the imaging system includes an electronic switching device configured to alternate the imaging mode of the system. In some embodiments, the imaging system includes a mechanical support configured to enable a position and orientation of the x-ray source array and the digital area x-ray detector to be adjusted such that both upper and lower extremities of a patient can be imaged using various imaging modes while a position of the plurality of spatially distributed x-ray focal spots with respect to the digital area x-ray detector remains unchanged.
    Type: Application
    Filed: June 1, 2021
    Publication date: November 18, 2021
    Inventors: Otto Z. ZHOU, Jianping LU, Yueh Zenas LEE, Christina INSCOE, Alex BILLINGSLEY
  • Publication number: 20210338180
    Abstract: Intraoral three-dimensional (3D) tomosynthesis imaging systems, methods, and non-transitory computer readable media are used to generate one or more two-dimensional (2D) x-ray projection images and to reconstruct, using a computing platform, the one or more 2D x-ray projection images into one or more 3D images of an object, such as teeth of a patient, which can then be displayed on a monitor in order to enhance diagnostic accuracy of dental disease. The intraoral 3D tomosynthesis imaging system can include a wall-mountable control unit connected to one end of an articulating arm, the other end of which is connected to an x-ray source, which is configured to generate x-ray radiation that is acquired by an x-ray detector held at a desired position by an x-ray detector holder that is removably coupled to a collimator at an emission region of the x-ray source.
    Type: Application
    Filed: June 8, 2021
    Publication date: November 4, 2021
    Applicant: Surround Medical Systems, Inc.
    Inventors: Jianping Lu, Otto Z. Zhou, Andrew Tucker, Jing Shan, Brian Gonzales
  • Publication number: 20210236067
    Abstract: Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging are disclosed. In some aspects, systems include a stationary x-ray source array with an array of x-ray pixels configured to generate x-ray beams at different viewing angles relative to a subject to be imaged that is stationary, a stationary area x-ray detector configured to record x-ray projection images of the subject, a physiological gating apparatus for monitoring at least one physiological signal of the subject and defining a physiological phase and a time window based on the at least one physiological signal, and a computing platform configured to activate the x-ray pixels based on the physiological phase and the time window and upon receipt of the at least one physiological signal from the physiological gating apparatus in order to synchronize x-ray exposure with the at least one physiological signal of the subject.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Jianping Lu, Jing Shan, Yueh Lee, Otto Z. Zhou, Jabari Calliste, Christina Inscoe, Pavel Chtcheprov, Andrew Tucker
  • Patent number: 11051771
    Abstract: Intraoral three-dimensional (3D) tomosynthesis imaging systems, methods, and non-transitory computer readable media are used to generate one or more two-dimensional (2D) x-ray projection images and to reconstruct, using a computing platform, the one or more 2D x-ray projection images into one or more 3D images of an object, such as teeth of a patient, which can then be displayed on a monitor in order to enhance diagnostic accuracy of dental disease. The intraoral 3D tomosynthesis imaging system can include a wall-mountable control unit connected to one end of an articulating arm, the other end of which is connected to an x-ray source, which is configured to generate x-ray radiation that is acquired by an x-ray detector held at a desired position by an x-ray detector holder that is removably coupled to a collimator at an emission region of the x-ray source.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: July 6, 2021
    Inventors: Jianping Lu, Otto Z. Zhou, Andrew Tucker, Jing Shan, Brian Gonzales
  • Patent number: 10980494
    Abstract: Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging are disclosed. In some aspects, systems include a stationary x-ray source array with an array of x-ray pixels configured to generate x-ray beams at different viewing angles relative to a subject to be imaged that is stationary, a stationary area x-ray detector configured to record x-ray projection images of the subject, a physiological gating apparatus for monitoring at least one physiological signal of the subject and defining a physiological phase and a time window based on the at least one physiological signal, and a computing platform configured to activate the x-ray pixels based on the physiological phase and the time window and upon receipt of the at least one physiological signal from the physiological gating apparatus in order to synchronize x-ray exposure with the at least one physiological signal of the subject.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: April 20, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Jianping Lu, Jing Shan, Yueh Lee, Otto Z. Zhou, Jabari Calliste, Christina Inscoe, Pavel Chtcheprov, Andrew Tucker
  • Patent number: 10835199
    Abstract: Optical geometry calibration devices, systems, and related methods for x-ray imaging are disclosed. An optical-based geometry calibration device is configured to interface with a two-dimensional (2D) imaging device to perform three-dimensional (3D) imaging. The optical-based geometry calibration device includes one or more optical cameras fixed to either an x-ray source or an x-ray detector, one or more markers fixed to the x-ray detector or the x-ray source, with each of the one or more optical cameras being configured to capture at least one photographic image of one or more corresponding optical markers when each x-ray image of the object is captured, and an image processing system configured to compute positions of the x-ray source relative to the x-ray detector for each 2D projection image based on the at least one photographic image of the one or more markers.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: November 17, 2020
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Pavel Chtcheprov, Otto Z. Zhou, Jianping Lu
  • Publication number: 20200337655
    Abstract: Intraoral three-dimensional (3D) tomosynthesis imaging systems, methods, and non-transitory computer readable media are used to generate one or more two-dimensional (2D) x-ray projection images and to reconstruct, using a computing platform, the one or more 2D x-ray projection images into one or more 3D images of an object, such as teeth of a patient, which can then be displayed on a monitor in order to enhance diagnostic accuracy of dental disease. The intraoral 3D tomosynthesis imaging system can include a wall-mountable control unit connected to one end of an articulating arm, the other end of which is connected to an x-ray source, which is configured to generate x-ray radiation that is acquired by an x-ray detector held at a desired position by an x-ray detector holder that is removably coupled to a collimator at an emission region of the x-ray source.
    Type: Application
    Filed: February 3, 2017
    Publication date: October 29, 2020
    Inventors: Jianping Lu, Otto Z. Zhou, Andrew Tucker, Jing Shan, Brian Gonzales
  • Patent number: 10539708
    Abstract: A three-dimensional (3D) x-ray tomographic imaging system includes an x-ray source fixedly attached to a first unmanned vehicle, which can be aerial or otherwise configured for locomotion, and an x-ray detector. A vehicle controller is configured to be operated by an operator, and an optical camera is mounted to the first unmanned vehicle at a fixed position relative to the x-ray source, and an optical pattern is fixed at a position relative to the x-ray detector. The x-ray source and x-ray detector are configured to be positioned on substantially opposite sides of the object, while the x-ray source is rotated radially around the object to one or more imaging positions.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 21, 2020
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Otto Z. Zhou, Jianping Lu, Pavel Chtcheprov
  • Patent number: 9907520
    Abstract: Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging are disclosed. In some aspects, an intraoral tomosynthesis imaging system includes an x-ray source array for positioning outside a mouth of a patient, wherein the x-ray source array contains multiple x-ray focal spots that are spatially distributed on an anode, an area digital x-ray detector for positioning inside the mouth of the patient, a geometry calibration mechanism for connecting the x-ray detector to the x-ray source array, an x-ray collimator for confining x-ray beams to a region of interest, a controller for regulating x-ray radiation and synchronization of the x-ray radiation with the x-ray detector, such that multiple 2D projection images of the ROI are acquired without mechanical motion of the x-ray source array, the x-ray detector, or the mouth of the patient, and a computer program and workstation for 3D tomosynthesis image reconstruction and display.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: March 6, 2018
    Assignees: The University of North Carolina at Chapel Hill, XINTEK, INC.
    Inventors: Otto Z. Zhou, Jianping Lu, Jing Shan, Andrew Tucker, Pavel Chtcheprov, Enrique Platin, André Mol, Laurence Rossman Gaalaas, Gongting Wu
  • Publication number: 20170329037
    Abstract: A three-dimensional (3D) x-ray tomographic imaging system includes an x-ray source fixedly attached to a first unmanned vehicle, which can be aerial or otherwise configured for locomotion, and an x-ray detector. A vehicle controller is configured to be operated by an operator, and an optical camera is mounted to the first unmanned vehicle at a fixed position relative to the x-ray source, and an optical pattern is fixed at a position relative to the x-ray detector. The x-ray source and x-ray detector are configured to be positioned on substantially opposite sides of the object, while the x-ray source is rotated radially around the object to one or more imaging positions.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 16, 2017
    Inventors: Otto Z. Zhou, Jianping Lu, Pavel Chtcheprov
  • Publication number: 20170319160
    Abstract: Intraoral three-dimensional (3D) tomosynthesis imaging systems, methods, and non-transitory computer readable media are used to generate one or more two-dimensional (2D) x-ray projection images and to reconstruct, using a computing platform, the one or more 2D x-ray projection images into one or more 3D images of an object, such as teeth of a patient, which can then be displayed on a monitor in order to enhance diagnostic accuracy of dental disease. The intraoral 3D tomosynthesis imaging system can include a wall-mountable control unit connected to one end of an articulating arm, the other end of which is connected to an x-ray source, which is configured to generate x-ray radiation that is acquired by an x-ray detector held at a desired position by an x-ray detector holder that is removably coupled to a collimator at an emission region of the x-ray source.
    Type: Application
    Filed: February 3, 2017
    Publication date: November 9, 2017
    Inventors: Jianping Lu, Ph.D., Otto Z. Zhou, Ph.D., Andrew Tucker, Jing Shan, Brian Gonzales
  • Patent number: 9782136
    Abstract: Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging can include an x-ray source containing multiple focal spots spatially distributed on one or multiple anodes in an evacuated chamber, an x-ray detector for positioning inside a mouth of a patient, a device for determining imaging geometry of the intraoral tomosynthesis system; and control electronics configured to regulate the x-ray source, by sequentially activating each of the multiple focal spots, such that multiple two dimensional (2D) projection images of the mouth of the patient are acquired from multiple viewing angles. In some aspects, the device for determining the imaging geometry can comprise a plate connectedly attached to the x-ray detector, at least one light source connectedly attached to the x-ray source, and a camera configured to capture at least one light spot produced by a projection of at least one light beam onto the plate.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: October 10, 2017
    Assignees: The University of North Carolina at Chapel Hill, Xintek, Inc.
    Inventors: Otto Z. Zhou, Jianping Lu, Jing Shan, Andrew Tucker, Pavel Chtcheprov, Enrique Platin, André Mol, Laurence Rossman Gaalaas, Gongting Wu
  • Publication number: 20170219498
    Abstract: Optical geometry calibration devices, systems, and related methods for x-ray imaging are disclosed. An optical-based geometry calibration device is configured to interface with a two-dimensional (2D) imaging device to perform three-dimensional (3D) imaging.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 3, 2017
    Inventors: Pavel Chtcheprov, Otto Z. Zhou, Jianping Lu
  • Publication number: 20160317107
    Abstract: Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging are disclosed. In some aspects, an intraoral tomosynthesis imaging system includes an x-ray source array for positioning outside a mouth of a patient, wherein the x-ray source array contains multiple x-ray focal spots that are spatially distributed on an anode, an area digital x-ray detector for positioning inside the mouth of the patient, a geometry calibration mechanism for connecting the x-ray detector to the x-ray source array, an x-ray collimator for confining x-ray beams to a region of interest, a controller for regulating x-ray radiation and synchronization of the x-ray radiation with the x-ray detector, such that multiple 2D projection images of the ROI are acquired without mechanical motion of the x-ray source array, the x-ray detector, or the mouth of the patient, and a computer program and workstation for 3D tomosynthesis image reconstruction and display.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Otto Z. ZHOU, Jianping LU, Jing SHAN, Andrew TUCKER, Pavel CHTCHEPROV, Enrique PLATIN, André MOL, Laurence Rossman GAALAAS, Gongting WU
  • Publication number: 20160106382
    Abstract: Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging are disclosed. In some aspects, systems include a stationary x-ray source array with an array of x-ray pixels configured to generate x-ray beams at different viewing angles relative to a subject to be imaged that is stationary, a stationary area x-ray detector configured to record x-ray projection images of the subject, a physiological gating apparatus for monitoring at least one physiological signal of the subject and defining a physiological phase and a time window based on the at least one physiological signal, and a computing platform configured to activate the x-ray pixels based on the physiological phase and the time window and upon receipt of the at least one physiological signal from the physiological gating apparatus in order to synchronize x-ray exposure with the at least one physiological signal of the subject.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Jianping Lu, Jing Shan, Yueh Lee, Otto Z. Zhou, Jabari Calliste, Christina Inscoe, Pavel Chtcheprov, Andrew Tucker
  • Publication number: 20150359504
    Abstract: Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging can include an x-ray source containing multiple focal spots spatially distributed on one or multiple anodes in an evacuated chamber, an x-ray detector for positioning inside a mouth of a patient, a device for determining imaging geometry of the intraoral tomosynthesis system; and control electronics configured to regulate the x-ray source, by sequentially activating each of the multiple focal spots, such that multiple two dimensional (2D) projection images of the mouth of the patient are acquired from multiple viewing angles. In some aspects, the device for determining the imaging geometry can comprise a plate connectedly attached to the x-ray detector, at least one light source connectedly attached to the x-ray source, and a camera configured to capture at least one light spot produced by a projection of at least one light beam onto the plate.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Otto Z. Zhou, Jianping Lu, Jing Shan, Andrew Tucker, Pavel Chtcheprov, Enrique Platin, André Mol, Laurence Rossman Gaalaas, Gongting Wu