Patents by Inventor P. K. Andy Hong

P. K. Andy Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170297934
    Abstract: A method of treating wastewater can include introducing wastewater into a wastewater treatment apparatus through a wastewater inlet. The wastewater can be compressed and decompressed via a mechanical pressurizing element and subsequently discharged from the wastewater treatment apparatus via a treated water outlet. The pressure cycling wastewater treatment apparatus can include a confined chamber which encloses an interior volume. The confined chamber can have a wastewater inlet through which wastewater can flow into the confined chamber. In addition, an expansion fluid inlet can receive an expansion fluid into the confined chamber. A treated water outlet can allow treated water to flow out of the confined chamber. Within the interior volume of the confined chamber, a mechanical pressurizing element can be configured to move in a cyclical pattern.
    Type: Application
    Filed: February 10, 2017
    Publication date: October 19, 2017
    Inventor: P.K. Andy Hong
  • Patent number: 9604863
    Abstract: A pressure cycling wastewater treatment apparatus can include a confined chamber which encloses an interior volume. The confined chamber can have a wastewater inlet through which wastewater can flow into the confined chamber. In addition, an expansion fluid inlet can receive an expansion fluid into the confined chamber. A treated water outlet can allow treated water to flow out of the confined chamber. Within the interior volume of the confined chamber, a mechanical pressurizing element can be configured to move in a cyclical pattern. Motion of the mechanical pressurizing element can cyclically compress and decompress a mixture of wastewater and expansion fluid inside the confined chamber. The motion of the mechanical pressurizing element can be driven by a driving unit connected to the mechanical pressurizing element through a crankshaft.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: March 28, 2017
    Inventor: P. K. Andy Hong
  • Publication number: 20160039691
    Abstract: A pressure cycling wastewater treatment apparatus can include a confined chamber which encloses an interior volume. The confined chamber can have a wastewater inlet through which wastewater can flow into the confined chamber. In addition, an expansion 5 fluid inlet can receive an expansion fluid into the confined chamber. A treated water outlet can allow treated water to flow out of the confined chamber. Within the interior volume of the confined chamber, a mechanical pressurizing element can be configured to move in a cyclical pattern. Motion of the mechanical pressurizing element can cyclically compress and decompress a mixture of wastewater and expansion fluid inside the confined chamber. 10 The motion of the mechanical pressurizing element can be driven by a driving unit connected to the mechanical pressurizing element through a crankshaft.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 11, 2016
    Inventor: P.K. Andy Hong
  • Patent number: 9139460
    Abstract: A method of deactivating biomass is set forth. The method includes two stages, a disrupting stage and a rupture stage. The disrupting stage includes the steps of injecting an oxidizer gas into the biomass with minimal or significant elevated pressure and then a depressurizing of the biomass. The steps cause a disruption of cellular membranes of cells present in the biomass. The rupture stage includes the step of injecting the biomass with a rupture gas sufficient to pressurize the biomass to a second elevated pressure following by the depressurizing of the biomass. The injecting and depressurizing steps of the rupture stage can be repeated at least two times in order to rupture the cell membranes and expose residual cell contents.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: September 22, 2015
    Assignee: University of Utah Research Foundation
    Inventor: P. K. Andy Hong
  • Patent number: 9090834
    Abstract: A method for upgrading heavy hydrocarbons into more usable hydrocarbon products is provided. The method provides for the steps of adding heavy hydrocarbons to a solvent system to form a reaction medium, and ozonating the reaction medium with an ozone containing gas to provide ozonation products. The solvent system can include a first solvent that solubilizes at least a portion of the heavy hydrocarbons and a reactive solvent which reacts with ozonation intermediates. Reactive solvent is maintained at concentrations sufficient to decompose ozonation intermediates.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 28, 2015
    Assignee: University of Utah Research Foundation
    Inventors: P. K. Andy Hong, Zhixiong Cha
  • Patent number: 8709263
    Abstract: A method of removing contaminants from slurry samples is set forth. The method includes the utilization of repeated pressurizing and depressurizing steps to disrupt solidified particles in solid-containing slurries thereby increasing decontamination efficiency. An expansion fluid is injected into the slurry sample sufficient to create microbubbles when the slurry sample is depressurized. The micro bubbles mechanically disrupt the solidified particles increasing contaminant exposure. The microbubbles also provide for increased interfacial regions where contaminants can accumulate at gas-liquid thin films that are in close proximity to and can be effectively removed using a suitable expansion fluid and optional decontamination agents.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: April 29, 2014
    Assignee: University of Utah Research Foundation
    Inventor: P. K. Andy Hong
  • Publication number: 20130292297
    Abstract: A method for upgrading heavy hydrocarbons into more usable hydrocarbon products is provided. The method provides for the steps of adding heavy hydrocarbons to a solvent system to form a reaction medium, and ozonating the reaction medium with an ozone containing gas to provide ozonation products. The solvent system can include a first solvent that solubilizes at least a portion of the heavy hydrocarbons and a reactive solvent which reacts with ozonation intermediates. Reactive solvent is maintained at concentrations sufficient to decompose ozonation intermediates.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 7, 2013
    Inventors: P.K. Andy Hong, Zhixiong Cha
  • Patent number: 8557565
    Abstract: A method for the degradation of polycyclic aromatic compounds is disclosed that involves dissolving ozone in a bipolar solvent comprising a non-polar solvent in which is of sufficiently non-polar character to solubilized the polycyclic aromatic compounds, and a polar-water-compatible solvent which is fully miscible with the non-polar solvent to form a single phase with the non-polar solvent. The bipolar solvent with dissolved ozone is contacted with the polycyclic aromatic compounds to solubilize the polycyclic aromatic compounds and react the dissolved polycyclic aromatic compounds with the ozone to degrade the dissolved polycyclic aromatic compounds to oxygenated intermediates. The bipolar solvent is then mixed with sufficient water to form separate non-polar and polar phases, the non-polar phase comprising the non-polar solvent and the polar phase comprising the non-polar solvent and the oxygenated intermediates.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 15, 2013
    Inventors: David Wavrek, P. K. Andy Hong, Jiun-Chi Chao, Yu Zeng
  • Publication number: 20130192138
    Abstract: A method of deactivating biomass is set forth. The method includes two stages, a disrupting stage and a rupture stage. The disrupting stage includes the steps of injecting an oxidizer gas into the biomass with minimal or significant elevated pressure and then a depressurizing of the biomass. The steps cause a disruption of cellular membranes of cells present in the biomass. The rupture stage includes the step of injecting the biomass with a rupture gas sufficient to pressurize the biomass to a second elevated pressure following by the depressurizing of the biomass. The injecting and depressurizing steps of the rupture stage can be repeated at least two times in order to rupture the cell membranes and expose residual cell contents.
    Type: Application
    Filed: March 23, 2011
    Publication date: August 1, 2013
    Inventor: P. K. Andy Hong
  • Patent number: 8298814
    Abstract: A method for the degradation of polycyclic aromatic compounds is disclosed that involves dissolving ozone in a bipolar solvent comprising a non-polar solvent in which is of sufficiently non-polar character to solubilized the polycyclic aromatic compounds, and a polar-water-compatible solvent which is fully miscible with the non-polar solvent to form a single phase with the non-polar solvent. The bipolar solvent with dissolved ozone is contacted with the polycyclic aromatic compounds to solubilize the polycyclic aromatic compounds and react the dissolved polycyclic aromatic compounds with the ozone to degrade the dissolved polycyclic aromatic compounds to oxygenated intermediates. The bipolar solvent is then mixed with sufficient water to form separate non-polar and polar phases, the non-polar phase comprising the non-polar solvent and the polar phase comprising the non-polar solvent and the oxygenated intermediates.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: October 30, 2012
    Assignees: University of Utah
    Inventors: P. K. Andy Hong, David A. Wavrek, Jiun-Chi Chao, Yu Zeng
  • Publication number: 20080242875
    Abstract: A method for the degradation of polycyclic aromatic compounds is disclosed that involves dissolving ozone in a bipolar solvent comprising a non-polar solvent in which is of sufficiently non-polar character to solubilized the polycyclic aromatic compounds, and a polar-water-compatible solvent which is fully miscible with the non-polar solvent to form a single phase with the non-polar solvent. The bipolar solvent with dissolved ozone is contacted with the polycyclic aromatic compounds to solubilize the polycyclic aromatic compounds and react the dissolved polycyclic aromatic compounds with the ozone to degrade the dissolved polycyclic aromatic compounds to oxygenated intermediates. The bipolar solvent is then mixed with sufficient water to form separate non-polar and polar phases, the non-polar phase comprising the non-polar solvent and the polar phase comprising the non-polar solvent and the oxygenated intermediates.
    Type: Application
    Filed: March 24, 2008
    Publication date: October 2, 2008
    Inventors: P.K. Andy Hong, David A. Wavrek, Jiun-Chi Chao, Yu Zeng