Patents by Inventor Pablo Diaz-Gutierrez

Pablo Diaz-Gutierrez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7609179
    Abstract: The speed of dictionary based decompression is limited by the cost of accessing random values in the dictionary. If the size of the dictionary can be limited so it fits into cache, decompression is made to be CPU bound rather than memory bound. To achieve this, a value prefix coding scheme is presented, wherein value prefixes are stored in the dictionary to get good compression from small dictionaries. Also presented is an algorithm that determines the optimal entries for a value prefix dictionary. Once the dictionary fits in cache, decompression speed is often limited by the cost of mispredicted branches during Huffman code processing. A novel way is presented to quantize Huffman code lengths to allow code processing to be performed with few instructions, no branches, and very little extra memory. Also presented is an algorithm for code length quantization that produces the optimal assignment of Huffman codes and show that the adverse effect of quantization on the compression ratio is quite small.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Pablo Diaz-Gutierrez, Vijayshankar Raman, Garret Swart
  • Publication number: 20090174583
    Abstract: The speed of dictionary based decompression is limited by the cost of accessing random values in the dictionary. If the size of the dictionary can be limited so it fits into cache, decompression is made to be CPU bound rather than memory bound. To achieve this, a value prefix coding scheme is presented, wherein value prefixes are stored in the dictionary to get good compression from small dictionaries. Also presented is an algorithm that determines the optimal entries for a value prefix dictionary. Once the dictionary fits in cache, decompression speed is often limited by the cost of mispredicted branches during Huffman code processing. A novel way is presented to quantize Huffman code lengths to allow code processing to be performed with few instructions, no branches, and very little extra memory. Also presented is an algorithm for code length quantization that produces the optimal assignment of Huffman codes and show that the adverse effect of quantization on the compression ratio is quite small.
    Type: Application
    Filed: January 8, 2008
    Publication date: July 9, 2009
    Applicant: International Business Machines Corporation
    Inventors: Pablo Diaz-Gutierrez, Vijayshankar Raman, Garret Swart