Patents by Inventor Pablo Pureza

Pablo Pureza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080060387
    Abstract: A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
    Type: Application
    Filed: November 5, 2007
    Publication date: March 13, 2008
    Inventors: Jasbinder Sanghera, Pablo Pureza, Frederic Kung, Daniel Gibson, Leslie Shaw, Ishwar Aggarwal
  • Publication number: 20070110377
    Abstract: A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
    Type: Application
    Filed: January 16, 2007
    Publication date: May 17, 2007
    Applicant: United States Government as represented by the Secretary of the Navy
    Inventors: Jasbinder Sanghera, Pablo Pureza, Frederic Kung, Daniel Gibson, Leslie Shaw, Ishwar Aggarwal
  • Patent number: 7197899
    Abstract: A process includes the steps of disposing a solid core glass rod at a point removed from hot temperature that can cause crystallization in the core glass rod, disposing a solid clad glass rod at a point removed from the core glass rod; softening to the flowing condition the solid clad glass rod, transferring the softened clad glass to a lower point, the softened clad glass having a central void therethrough, heating the softened clad glass above its crystallization temperature, cooling the softened clad glass to a draw temperature, transferring the solid core glass rod into the central void in the softened glad glass, softening to the flowing condition the solid core glass rod with the heat from the softened and cooled clad glass, and drawing the core/clad, glass fiber by allowing the clad and core glasses to flow in the form of a fiber.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: April 3, 2007
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Reza Mossadegh, Brian Cole, Pablo Pureza, Jasbinder Sanghera, Shyam Bayya, Ishwar Aggarwal
  • Publication number: 20050074215
    Abstract: A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
    Type: Application
    Filed: October 21, 2004
    Publication date: April 7, 2005
    Applicant: United States of America as represented by the Secretary of the Navy
    Inventors: Jasbinder Sanghera, Pablo Pureza, Frederic Kung, Daniel Gibson, Leslie Shaw, Ishwar Aggarwal
  • Publication number: 20030213267
    Abstract: This invention pertains to apparatus and process for making core/clad glass fibers. The apparatus includes a central tube or receptacle connected at the top to a pressure controller and terminating in a reduced section; a side tube or receptacle positioned at about the level of the upper portion of the central tube; an outer tube or receptacle disposed around the bottom portion of the central tube terminating in a smaller section which is concentric with and spaced directly below the section of the central tube; a side arm connecting the side tube and the outer tube; and furnaces around the side, outer, and the reduced sections of the central arid the outer tubes.
    Type: Application
    Filed: January 6, 2003
    Publication date: November 20, 2003
    Inventors: Reza Mossadegh, Brian Cole, Pablo Pureza, Jasbinder Sanghera, Shyam Bayya, Ishwar Aggarwal
  • Patent number: 6526782
    Abstract: This invention pertains to apparatus and process for making core/clad glass fibers. The apparatus includes a central tube or receptacle connected at the top to a pressure controller and terminating in a reduced section; a side tube or receptacle positioned at about the level of the upper portion of the central tube; an outer tube or receptacle disposed around the bottom portion of the central tube terminating in a smaller section which is concentric with and spaced directly below the section of the central tube; a side arm connecting the side tube and the outer tube; and furnaces around the side, outer, and the reduced sections of the central and the outer tubes.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: March 4, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Reza Mossadegh, Brian Cole, Pablo Pureza, Jasbinder Sanghera, Shyam Bayya, Ishwar Aggarwal
  • Patent number: 6021649
    Abstract: A core/clad glass optical fiber is made by melting a core glass rod and a adding glass rod in separate crucibles which are not concentric with respect to each other and the respective core and cladding glass melts passed out of contact with each other to a glass melt contacting zone proximate a fiber drawing orifice in which the cladding glass surrounds the core glass and a core/clad glass fiber is drawn. This process enables the clad glass fiber to be drawn directly from core and cladding glass rods without the need for a preform or forming a melt from glass chards or chunks, thereby reducing the cost of producing the fiber and also producing a glass clad optical fiber of high purity and excellent concentricity. Chalcogenide glass fibers having a concentricity of 100% have been made.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: February 8, 2000
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Pablo Pureza, Ishwar D. Aggarwal, Reza Mossadegh
  • Patent number: 5879426
    Abstract: A core/clad glass optical fiber is made by melting a core glass rod and a adding glass rod in separate crucibles which are not intersecting with respect to each other and the respective core and cladding glass melts passed out of contact with each other to a glass melt contacting zone proximate a fiber drawing orifice in which the cladding glass surrounds the core glass and a core/clad glass fiber is drawn. This process enables the clad glass fiber to be drawn directly from core and cladding glass rods without the need for a preform or forming a melt from glass chards or chunks, thereby reducing the cost of producing the fiber and also producing a glass clad optical fiber of high purity and excellent concentricity. Chalcogenide glass fibers having a concentricity of 100% have been made.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: March 9, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Pablo Pureza, Ishwar D. Aggarwal, Reza Mossadegh
  • Patent number: 5735927
    Abstract: Core/clad glass optical fiber preforms free of bubbles and soot at the coclad interface are fabricated by inserting a glass core rod into a cladding glass tube sized so that space remains between them, sealing the top and bottom of the tube onto the core rod to form a sealed space between them which is relatively soot free and under a vacuum and then hot isostatically pressing the sealed composite to collapse the tube onto the rod and also collapse bubbles in the glass. Soot formation is avoided or minimized by purging the space with inert gas while the bottom of the tube is collapsed onto the rod and by sealing the top under a dynamic vacuum and at the lowest possible temperature to avoid soot formation without cracking the glass. The space is vacuum outgassed before the second seal is made. Chalcogenide fiber drawn from a preform made in this fashion exhibits very low transmission losses.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: April 7, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jasbinder Sanghera, Pablo Pureza, Ishwar Aggarwal, Robert Miklos