Patents by Inventor Pablo Umana

Pablo Umana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447558
    Abstract: The invention relates to new bispecific antigen binding molecules, comprising at least one antigen binding domain capable of specific binding to 4-1BB, at least one moiety capable of specific binding to a target cell antigen, and a Fc domain composed of a first and a second subunit capable of stable association, and to methods of producing these molecules and to methods of using the same.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 20, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Claudia Ferrara Koller, Christina Claus, Christian Klein, Pablo Umaña, Wei Xu
  • Publication number: 20220281995
    Abstract: The invention provides antibodies against Fibroblast Activation Protein (FAP) and methods of using the same.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 8, 2022
    Applicant: Roche Glycart AG
    Inventors: Marina BACAC, Anne FREIMOSER-GRUNDSCHOBER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Valeria G. NICOLINI, Pablo UMANA
  • Publication number: 20220275087
    Abstract: The present invention generally relates to novel protease-activatable T cell activating bispecific molecules and idiotype-specific polypeptides. The present invention also relates to polynucleotides encoding such protease-activatable T cell activating bispecific molecules and idiotype-specific polypeptides, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the protease-activatable T cell activating bispecific molecules and idiotype-specific polypeptides of the invention, and to methods of using these protease-activatable T cell activating bispecific molecules and idiotype-specific polypeptides in the treatment of disease.
    Type: Application
    Filed: December 2, 2021
    Publication date: September 1, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Peter BRUENKER, Rebecca CROASDALE-WOOD, Christian KLEIN, Juergen Michael SCHANZER, Kay-Gunnar STUBENRAUCH, Pablo UMANA, Martina GEIGER, Eric SULLIVAN, Jigar PATEL
  • Publication number: 20220267463
    Abstract: The present invention relates to antibodies which bind to antigens on target cells and which target radionuclides to said cells, and to methods of using the same.
    Type: Application
    Filed: July 10, 2020
    Publication date: August 25, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Pablo UMANA, Sabine IMHOF-JUNG, Alexander HAAS, Christian KLEIN, Sofia FROST, Felix BORMANN, Guy GEORGES, Sebastian FENN, Florian LIPSMEIER, Daniela MATSCHEKO, Joerg MOELLEKEN, Barbara WEISER
  • Publication number: 20220267395
    Abstract: The invention relates to novel TNF family ligand trimer-containing antigen binding molecules comprising (a) at least one moiety capable of specific binding to a target cell antigen, (b) a polypeptide comprising three ectodomains of a TNF ligand family member or fragments thereof that are connected to each other by peptide linkers and (c) a Fc domain composed of a first and a second subunit capable of stable association, and to methods of producing these molecules and to methods of using the same.
    Type: Application
    Filed: November 18, 2021
    Publication date: August 25, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Maria Amann, Peter Bruenker, Christina Claus, Claudia Ferrara Koller, Sandra Grau-Richards, Christian Klein, Viktor Levitski, Ekkehard Moessner, Pablo Umana
  • Publication number: 20220267464
    Abstract: The invention relates to new humanized CEA antibodies and to CEA targeting 4-1BBL trimer-containing antigen binding molecules comprising these CEA antibodies as well as their use in the treatment of cancer.
    Type: Application
    Filed: December 17, 2021
    Publication date: August 25, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Claudia Ferrara Koller, Thomas Hofer, Christian Klein, Ekkehard Moessner, Christina Claus, Ralf Hosse, Bianca Scherer, Pablo Umana
  • Publication number: 20220259326
    Abstract: The invention relates to novel TNF family ligand trimer-containing antigen binding molecules comprising (a) at least one moiety capable of specific binding to a target cell antigen and (b) a first and a second polypeptide that are linked to each other by a disulfide bond, characterized in that the first polypeptide comprises two ectodomains of a TNF ligand family member or fragments thereof that are connected to each other by a peptide linker and in that the second polypeptide comprises only one ectodomain of said TNF ligand family member or a fragment thereof.
    Type: Application
    Filed: January 21, 2022
    Publication date: August 18, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Maria Amann, Peter Bruenker, Christina Claus, Claudia Ferrara Koller, Sandra Grau-Richards, Christian Klein, Viktor Levitski, Ekkehard Moessner, Joerg Thomas Regula, Pablo Umana
  • Publication number: 20220259327
    Abstract: The invention relates to novel TNF family ligand trimer-containing antigen binding molecules comprising (a) at least one moiety capable of specific binding to a target cell antigen and (b) a first and a second polypeptide that are linked to each other by a disulfide bond, characterized in that the first polypeptide comprises two ectodomains of a TNF ligand family member or fragments thereof that are connected to each other by a peptide linker and in that the second polypeptide comprises only one ectodomain of said TNF ligand family member or a fragment thereof.
    Type: Application
    Filed: January 21, 2022
    Publication date: August 18, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Maria Amann, Peter Bruenker, Christina Claus, Claudia Ferrara Koller, Sandra Grau-Richards, Christian Klein, Viktor Levitski, Ekkehard Moessner, Joerg Thomas Regula, Pablo Umana
  • Publication number: 20220259314
    Abstract: The invention relates to bispecific antibodies comprising a first antigen-binding site that specifically binds to PD1 and a second antigen-binding site that specifically binds to TIM3, in particular to bispecific antibodies, wherein the bispecific antibody binds to 5 TIM3 with a lower binding affinity when compared to the binding to PD1. The invention further relates to methods of producing these molecules and to methods of using the same.
    Type: Application
    Filed: September 3, 2021
    Publication date: August 18, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: LAURA CODARRI-DEAK, GEORG FERTIG, JENS FISCHER, CHRISTIAN KLEIN, VIKTOR LEVITSKI, VALERIA LIFKE, MARIO PERRO, JOERG THOMAS REGULA, TILMAN SCHLOTHAUER, STEFAN SEEBER, PABLO UMANA, ILDIKO WUENSCHE, ADRIAN ZWICK
  • Patent number: 11413331
    Abstract: The present invention generally relates to immunoconjugates, particularly immunoconjugates comprising a mutant interleukin-2 polypeptide and an antibody that binds to PD-1. In addition, the invention relates to polynucleotide molecules encoding the immunoconjugates, and vectors and host cells comprising such polynucleotide molecules. The invention further relates to methods for producing the mutant immunoconjugates, pharmaceutical compositions comprising the same, and uses thereof.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: August 16, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Laura Codarri Deak, Christian Klein, Laura Lauener, Valeria G. Nicolini, Stefan Seeber, Pablo Umana, Inja Waldhauer
  • Publication number: 20220242971
    Abstract: The present invention generally relates to antigen-specific immunoconjugates for selectively delivering effector moieties that influence cellular activity. More specifically, the invention provides novel immunoconjugates comprising a first antigen binding moiety, an Fc domain and a single effector moiety. In addition, the present invention relates to polynucleotides encoding such immunoconjugates, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the immunoconjugates of the invention, and to methods of using these immunoconjugates in the treatment of disease.
    Type: Application
    Filed: September 27, 2021
    Publication date: August 4, 2022
    Applicant: Roche Glycart AG
    Inventors: Oliver AST, Peter BRUENKER, Thomas U. HOFER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA
  • Publication number: 20220227878
    Abstract: The invention relates to novel bispecific antigen binding molecules, comprising (a) at least one antigen binding domain capable of specific binding to Fibroblast Activation Protein (FAP) comprising FAP clone 212 or variants thereof, and (b) at least one antigen binding domain capable of specific binding to CD40, and to methods of producing these molecules and to methods of using the same.
    Type: Application
    Filed: December 21, 2021
    Publication date: July 21, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Peter BRUENKER, Harald DUERR, Christian KLEIN, Pablo UMANA, Alexander BUJOTZEK, Joerg ZIELONKA, Christine TRUMPFHELLER, Moritz RAPP, Marine LE CLECH
  • Publication number: 20220220224
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target 511cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 14, 2022
    Inventors: Marina BACAC, Peter BRUENKER, Anne FREIMOSER-GRUNDSCHOBER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA, Tina WEINZIERL
  • Publication number: 20220213224
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells comprising a common light chain. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: September 9, 2021
    Publication date: July 7, 2022
    Inventors: Christian KLEIN, Ekkehard MOESSNER, Ralf HOSSE, Peter BRUENKER, Pablo UMANA, Christiane NEUMANN
  • Patent number: 11365232
    Abstract: The present invention generally relates to fusion proteins of immunoglobulins and interleukin-2 (IL-2). In addition, the present invention relates to polynucleotides encoding such fusion proteins, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the fusion proteins of the invention, and to methods of using them in the treatment of disease.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: June 21, 2022
    Assignee: Roche Glycart AG
    Inventors: Ralf Hosse, Christian Klein, Ekkehard Moessner, Laurence Bernard Peterson, Pablo Umana, Linda Wicker
  • Patent number: 11340234
    Abstract: Herein is reported an anti-drug antibody immunoassay for the determination of the presence of an anti-drug antibody against an effector function suppressed human or humanized drug antibody in a sample comprising the incubation of a sample comprising mammalian blood serum with full length human Fcgamma receptor I or an Fc-region binding fragment thereof so that a complex between the anti-drug antibody against the effector function suppressed human or humanized drug antibody present in the sample and the human Fcgamma receptor I or the Fc-region binding fragment thereof forms, whereby the full length human Fcgamma receptor I or the Fc-region binding fragment thereof is conjugated to a detectable label, and the determination of the formed complex by the detectable label.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 24, 2022
    Inventors: Pablo Umana, Uwe Wessels, Kay-Gunnar Stubenrauch
  • Patent number: 11332545
    Abstract: The invention provides antibodies against Fibroblast Activation Protein (FAP) and methods of using the same.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: May 17, 2022
    Assignee: ROCHE GLYCART AG
    Inventors: Marina Bacac, Anne Freimoser-Grundschober, Ralf Hosse, Christian Klein, Ekkehard Moessner, Valeria G. Nicolini, Pablo Umana
  • Patent number: 11306154
    Abstract: The invention relates to novel TNF family ligand trimer-containing antigen binding molecules comprising (a) at least one moiety capable of specific binding to a target cell antigen and (b) a first and a second polypeptide that are linked to each other by a disulfide bond, characterized in that the first polypeptide comprises two ectodomains of a TNF ligand family member or fragments thereof that are connected to each other by a peptide linker and in that the second polypeptide comprises only one ectodomain of said TNF ligand family member or a fragment thereof.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: April 19, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Maria Amann, Peter Bruenker, Christina Claus, Claudia Ferrara Koller, Sandra Grau-Richards, Christian Klein, Viktor Levitski, Ekkehard Moessner, Joerg Thomas Regula, Pablo Umana
  • Publication number: 20220098305
    Abstract: The present invention relates to novel ICOS antibodies and tumor-targeted agonistic ICOS antigen binding molecules comprising them, pharmaceutical compositions comprising these molecules, and methods of using the same.
    Type: Application
    Filed: December 15, 2021
    Publication date: March 31, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Stefan DENGL, Tanja FAUTI, Jens FISCHER, Lucas HABEGGER, Christian KLEIN, Esther KOENIGSBERGER, Jens NIEWOEHNER, Johannes SAM, Pablo UMAÑA, Joerg ZIELONKA
  • Publication number: 20220072103
    Abstract: The present invention relates to the combination therapy of specific PD-1-targeted IL-2 variant immunocytokines with specific antibodies which bind human PD-L1.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 10, 2022
    Inventors: Laura CODARRI DEAK, Douglas Hanahan, Christian Klein, Valeria Nicolini, Pablo Umana, Stephen Wullschleger