Patents by Inventor Pablo Vieira Rego

Pablo Vieira Rego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815478
    Abstract: Through-tubing, cased-hole sealed material density can be evaluated using gamma ray measurements. Density evaluation comprises detecting, by at least one detector positioned within a casing of a wellbore including a sealing material positioned between the casing and a subsurface formation, electromagnetic radiation generated in response to nuclear radiation being emitted outward toward the subsurface formation, determining an electromagnetic radiation count based on the detected electromagnetic radiation, selecting at least one of a first reference material having a density that is less than a density of the sealing material and a second reference material having a density that is greater than the density of the sealing material, adjusting the electromagnetic radiation count based on the density of the at least one of the first reference material and the second reference material, and determining a density of the sealing material based on the adjusted electromagnetic radiation count.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: November 14, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Pablo Vieira Rego, Jeffrey James Crawford, Randolph S. Coles
  • Patent number: 11808136
    Abstract: A method for evaluating a sealing material positioned between a casing of a wellbore and a subsurface formation in which the wellbore is formed includes emitting an acoustic waveform outward from a position within the casing and detecting a return waveform that is generated in response to the acoustic waveform interacting with a region of interest that includes at least a portion of the sealing material. The method includes determining a first time window of the return waveform associated with the region of interest and trimming the return waveform based on the first time window. The method further includes determining a first spectral power density for the first time window of the trimmed return waveform and determining a composition ratio for the region of interest based on the first spectral power density.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: November 7, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Pablo Vieira Rego, Randolph S. Coles, Jeffrey James Crawford, Chung Chang
  • Publication number: 20230175391
    Abstract: The disclosure presents processes to determine the direction and magnitude of tubing eccentricity along the length of a tube inserted within a borehole. The tubing can be a wireline, a drill string, a drill pipe, or tubing capable of allowing fluid or other material to flow through it. As borehole operations proceed, the tubing can move toward the side of the borehole. This eccentricity can cause excess wear and tear on the tubing, on the casing of the borehole, or on the inner surface of the subterranean formation. The eccentricity can be measured using acoustic signals that are collected downhole covering the azimuthal angles 0° to 360° at a location in the borehole. The collected signals can be filtered, transformed, and analyzed to estimate the tubing eccentricity. Other processes and systems can use the results to obtain cement bond evaluations through tubing and to determine preventative or restorative actions.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 8, 2023
    Inventors: Brenno Caetano Troca Cabella, Xiang Wu, Marco Aurelio Luzio, Pablo Vieira Rego, Chung Chang, Federico Combis Lucas, Yao Ge, Ruijia Wang, Ho Yin Ma
  • Patent number: 11662496
    Abstract: Methods, systems, and program products are disclosed for implementing acoustic logging and determining wellbore material characteristics. In some embodiments, a method may include determining a polar differential signal for each of one or more pairs of azimuthally offset acoustic measurements within a wellbore. A reference azimuth is identified based, at least in part, on comparing the polar differential signals to a modeled bonding differential signal within a target response window. The method further includes determining differences between an acoustic measurement at the reference azimuth and acoustic measurements at one or more other azimuths and determining a wellbore material condition based, at least in part, on the determined differences.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 30, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Brenno Caetano Troca Cabella, Ruijia Wang, Chung Chang, Qingtao Sun, Yao Ge, Xiang Wu, Pablo Vieira Rego, Marco Aurelio Luzio, João Vicente Gonçalves Rocha
  • Publication number: 20220381138
    Abstract: A method for evaluating a sealing material positioned between a casing of a wellbore and a subsurface formation in which the wellbore is formed includes emitting an acoustic waveform outward from a position within the casing and detecting a return waveform that is generated in response to the acoustic waveform interacting with a region of interest that includes at least a portion of the sealing material. The method includes determining a first time window of the return waveform associated with the region of interest and trimming the return waveform based on the first time window. The method further includes determining a first spectral power density for the first time window of the trimmed return waveform and determining a composition ratio for the region of interest based on the first spectral power density.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Pablo Vieira Rego, Randolph S. Coles, Jeffrey James Crawford, Chung Chang
  • Publication number: 20220373706
    Abstract: Methods, systems, and program products are disclosed for implementing acoustic logging and determining wellbore material characteristics. In some embodiments, a method may include determining a polar differential signal for each of one or more pairs of azimuthally offset acoustic measurements within a wellbore. A reference azimuth is identified based, at least in part, on comparing the polar differential signals to a modeled bonding differential signal within a target response window. The method further includes determining differences between an acoustic measurement at the reference azimuth and acoustic measurements at one or more other azimuths and determining a wellbore material condition based, at least in part, on the determined differences.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 24, 2022
    Inventors: Brenno Caetano Troca Cabella, Ruijia Wang, Chung Chang, Qingtao Sun, Yao Ge, Xiang Wu, Pablo Vieira Rego, Marco Aurelio Luzio, João Vicente Gonçalves Rocha
  • Publication number: 20220373484
    Abstract: Through-tubing, cased-hole sealed material density can be evaluated using gamma ray measurements. Density evaluation comprises detecting, by at least one detector positioned within a casing of a wellbore including a sealing material positioned between the casing and a subsurface formation, electromagnetic radiation generated in response to nuclear radiation being emitted outward toward the subsurface formation, determining an electromagnetic radiation count based on the detected electromagnetic radiation, selecting at least one of a first reference material having a density that is less than a density of the sealing material and a second reference material having a density that is greater than the density of the sealing material, adjusting the electromagnetic radiation count based on the density of the at least one of the first reference material and the second reference material, and determining a density of the sealing material based on the adjusted electromagnetic radiation count.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Inventors: Pablo Vieira Rego, Jeffrey James Crawford, Randolph S. Coles