Patents by Inventor Pallab Banerjee

Pallab Banerjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999661
    Abstract: The invention provides compounds and methods of their use in the detection of apoptosis and necrosis both in vitro and in vivo. Also provided are compounds and methods of their use in selective delivery of agents to cells undergoing apoptosis or necrosis. The compounds and methods are based on conjugates formed with a dehydrogenase such as lactate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, and malate dehydrogenase. The compounds and methods are useful in the diagnosis and treatment of conditions characterized by apoptosis, including cancer, cardiac disease, neurologic disease including stroke, and autoimmunity. The compounds and methods offer distinct advantages over corresponding compounds and methods based on Annexin V. Also provided are methods for screening for compounds that modulate, i.e., inhibit or promote, apoptosis.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: April 7, 2015
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Andrew Kung, Pallab Banerjee
  • Patent number: 8562836
    Abstract: The present invention relates to synthetic methods for grafting hydrophilic chains onto polymers, particularly hydrophobic polymers such as poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), and chlorinated polypropylene (cPP). Resulting polymers include comb polymers which can have a microphase-separated structure of hydrophilic domains provided by the hydrophilic chains. Articles prepared from these comb polymers, particularly derived from PVDF, include membranes for water filtration in which the hydrophilic domains provide a pathway for water transport. PVC can be plasticized by grafting the PVC with hydrophilic chains. In addition, such articles, particularly articles having biomedical applications, can display anti-thrombogenic properties.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 22, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Jonathan F. Hester, Pallab Banerjee, Ariya Akthakul, Glenn C. Mailand
  • Publication number: 20110168630
    Abstract: The present invention relates to synthetic methods for grafting hydrophilic chains onto polymers, particularly hydrophobic polymers such as poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), and chlorinated polypropylene (cPP). Resulting polymers include comb polymers which can have a microphase-separated structure of hydrophilic domains provided by the hydrophilic chains. Articles prepared from these comb polymers, particularly derived from PVDF, include membranes for water filtration in which the hydrophilic domains provide a pathway for water transport. PVC can be plasticized by grafting the PVC with hydrophilic chains. In addition, such articles, particularly articles having biomedical applications, can display anti-thrombogenic properties.
    Type: Application
    Filed: November 30, 2010
    Publication date: July 14, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Jonathan F. Hester, Pallab Banerjee, Ariya Akthakul, Glenn C. Mailand
  • Patent number: 7868087
    Abstract: The present invention relates to synthetic methods for grafting hydrophilic chains onto polymers, particularly hydrophobic polymers such as poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), and chlorinated polypropylene (cPP). Resulting polymers include comb polymers which can have a microphase-separated structure of hydrophilic domains provided by the hydrophilic chains. Articles prepared from these comb polymers, particularly derived from PVDF, include membranes for water filtration in which the hydrophilic domains provide a pathway for water transport. PVC can be plasticized by grafting the PVC with hydrophilic chains. In addition, such articles, particularly articles having biomedical applications, can display anti-thrombogenic properties.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 11, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Jonathan F. Hester, Pallab Banerjee, Ariya Akthakul
  • Publication number: 20100034800
    Abstract: The invention provides compounds and methods of their use in the detection of apoptosis and necrosis both in vitro and in vivo. Also provided are compounds and methods of their use in selective delivery of agents to cells undergoing apoptosis or necrosis. The compounds and methods are based on conjugates formed with a dehydrogenase such as lactate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, and malate dehydrogenase. The compounds and methods are useful in the diagnosis and treatment of conditions characterized by apoptosis, including cancer, cardiac disease, neurologic disease including stroke, and autoimmunity. The compounds and methods offer distinct advantages over corresponding compounds and methods based on Annexin V. Also provided are methods for screening for compounds that modulate, i.e., inhibit or promote, apoptosis.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 11, 2010
    Applicant: Dana-Farber Cancer Institute, Inc.
    Inventors: Andrew Kung, Pallab Banerjee
  • Publication number: 20070219322
    Abstract: The present invention relates to synthetic methods for grafting hydrophilic chains onto polymers, particularly hydrophobic polymers such as poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), and chlorinated polypropylene (cPP). Resulting polymers include comb polymers which can have a microphase-separated structure of hydrophilic domains provided by the hydrophilic chains. Articles prepared from these comb polymers, particularly derived from PVDF, include membranes for water filtration in which the hydrophilic domains provide a pathway for water transport. PVC can be plasticized by grafting the PVC with hydrophilic chains. In addition, such articles, particularly articles having biomedical applications, can display anti-thrombogenic properties.
    Type: Application
    Filed: September 29, 2006
    Publication date: September 20, 2007
    Applicant: Massachusetts Institute of Technology
    Inventors: Anne Mayes, Jonathan Hester, Pallab Banerjee, Ariya Akthakul
  • Patent number: 7153905
    Abstract: Hyperbranched dendron (HD) polymers are synthesized using low molecular weight polyethyleneimine (BPEI-L) as a core and used for gene delivery. The obtained polymers display low toxicity and efficient gene delivery at low nitrogen-to-phosphate (N/P) ratios. Using successive attachment of ethyleneimine moieties to a PEI core, the polymer has a lower relative ratio of linear-to-branched structures than in the core PEI. The more extensive branching enables the polymer to condense plasmid DNA into nanostructure complexes with a size of less than or equal to about 100 nm. The complexes are stable and efficient in transfecting cells in the presence of serum. Bioluminescent imaging of in vivo gene expression using a luciferase reporter gene performed in live mice showed gene expression in the liver and in submandibular lymph nodes.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: December 26, 2006
    Assignee: The General Hospital Corporation
    Inventors: Pallab Banerjee, Wilfried Reichardt, Ralph Weissleder, Alexei Bogdanov
  • Publication number: 20060258804
    Abstract: Hyperbranched dendron (HD) polymers are synthesized using low molecular weight polyethyleneimine (BPEI-L) as a core and used for gene delivery. The obtained polymers display low toxicity and efficient gene delivery at low nitrogen-to-phosphate (N/P) ratios. Using successive attachment of ethyleneimine moieties to a PEI core, the polymer has a lower relative ratio of linear-to-branched structures than in the core PEI. The more extensive branching enables the polymer to condense plasmid DNA into nanostructure complexes with a size of less than or equal to about 100 nm. The complexes are stable and efficient in transfecting cells in the presence of serum. Bioluminescent imaging of in vivo gene expression using a luciferase reporter gene performed in live mice showed gene expression in the liver and in submandibular lymph nodes.
    Type: Application
    Filed: May 11, 2006
    Publication date: November 16, 2006
    Applicant: THE GENERAL HOSPITAL CORPORATION d/b/a MASSACHUSETTS GENERAL HOSPITAL
    Inventors: Pallab Banerjee, Wilfried Reichardt, Ralph Weissleder, Alexei Bogdanov
  • Publication number: 20050079149
    Abstract: Hyperbranched dendron (HD) polymers are synthesized using low molecular weight polyethyleneimine (BPEI-L) as a core and used for gene delivery. The obtained polymers display low toxicity and efficient gene delivery at low nitrogen-to-phosphate (N/P) ratios. Using successive attachment of ethyleneimine moieties to a PEI core, the polymer has a lower relative ratio of linear-to-branched structures than in the core PEI. The more extensive branching enables the polymer to condense plasmid DNA into nanostructure complexes with a size of less than or equal to about 100 nm. The complexes are stable and efficient in transfecting cells in the presence of serum. Bioluminescent imaging of in vivo gene expression using a luciferase reporter gene performed in live mice showed gene expression in the liver and in submandibular lymph nodes.
    Type: Application
    Filed: March 22, 2004
    Publication date: April 14, 2005
    Inventors: Pallab Banerjee, Wilfried Reichardt, Ralph Weissleder, Alexei Bogdanov
  • Patent number: 6632883
    Abstract: The present invention relates to block copolymer compositions capable of being processed by the application of pressure. The invention also provides methods for predicting phase diagrams of polymer blends and block copolymers, particularly block copolymers comprising hard and soft blocks having properties described herein. The methods of the invention allow prediction of polymeric systems which can be processed under conditions that do not promote polymer degradation.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 14, 2003
    Assignees: Massachusetts Institute of Technology, University of Massachusetts
    Inventors: Anne M. Mayes, Anne Valerie Ruzette, Thomas P. Russell, Pallab Banerjee
  • Publication number: 20020147282
    Abstract: The present invention relates to synthetic methods for grafting hydrophilic chains onto polymers, particularly hydrophobic polymers such as poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), and chlorinated polypropylene (cPP). Resulting polymers include comb polymers which can have a microphase-separated structure of hydrophilic domains provided by the hydrophilic chains. Articles prepared from these comb polymers, particularly derived from PVDF, include membranes for water filtration in which the hydrophilic domains provide a pathway for water transport. PVC can be plasticized by grafting the PVC with hydrophilic chains. In addition, such articles, particularly articles having biomedical applications, can display anti-thrombogenic properties.
    Type: Application
    Filed: September 12, 2001
    Publication date: October 10, 2002
    Inventors: Anne M. Mayes, Jonathan F. Hester, Pallab Banerjee, Ariya Akthakul
  • Patent number: 6399700
    Abstract: Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: June 4, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Linda G. Griffith, Darrell J. Irvine, Pallab Banerjee, Terry D. Johnson
  • Publication number: 20020042480
    Abstract: The present invention relates to block copolymer compositions capable of being processed by the application of pressure. The invention also provides methods for predicting phase diagrams of polymer blends and block copolymers, particularly block copolymers comprising hard and soft blocks having properties described herein. The methods of the invention allow prediction of polymeric systems which can be processed under conditions that do not promote polymer degradation.
    Type: Application
    Filed: February 16, 2001
    Publication date: April 11, 2002
    Inventors: Anne M. Mayes, Anne-Valerie Ruzette, Thomas P. Russell, Pallab Banerjee
  • Patent number: 6361901
    Abstract: A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: March 26, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Donald R. Sadoway, Pallab Banerjee, Philip Soo, Biying Huang
  • Publication number: 20010027237
    Abstract: Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents.
    Type: Application
    Filed: March 26, 2001
    Publication date: October 4, 2001
    Inventors: Anne M. Mayes, Linda G. Griffith, Darrell J. Irvine, Pallab Banerjee, Terry D. Johnson
  • Patent number: 6207749
    Abstract: Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: March 27, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Linda G. Griffith, Darrell J. Irvine, Pallab Banerjee, Terry D. Johnson
  • Patent number: 6150459
    Abstract: Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: November 21, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Linda G. Griffith, Darrell J. Irvine, Pallab Banerjee, Terry D. Johnson