Patents by Inventor Pamela A. Hajcak

Pamela A. Hajcak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6829422
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 7, 2004
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Publication number: 20040202435
    Abstract: Disclosed is an optical waveguide fiber that simultaneously exhibits large effective area and good resistance to bend induced attenuation, as measured by any of the tests known in the art. The cut off wavelength is controlled to allow single mode operation over a wavelength range that extends from about 1340 nm to 1650 nm. The optical waveguide fiber refractive index profile is simple in design allowing cost effective manufacture.
    Type: Application
    Filed: October 25, 2002
    Publication date: October 14, 2004
    Inventors: Scott R. Bickham, Phong Diep, Pamela A. Hajcak
  • Patent number: 6801699
    Abstract: An optical waveguide fiber that simultaneously exhibits large effective area and good resistance to bend induced attenuation, as measured by any of the tests known in the art. The cut off wavelength is controlled to allow single mode operation over a wavelength range that extends from about 1340 nm to 1650 nm. The optical waveguide fiber refractive index profile is simple in design allowing cost effective manufacture.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: October 5, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Phong Diep, Pamela A. Hajcak
  • Patent number: 6789960
    Abstract: A bridge fiber and a method of connecting two other dissimilar optical waveguide fibers is presented. The bridge fiber may be utilized to connect positive dispersion fibers or step index single mode fibers to compensative fibers, such as dispersion compensation fibers or dispersion-slope compensation fibers.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 14, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Martin Hempstead, Lisa L. Hepburn, Stephan L. Logunov, Lewis Kirk Klingensmith, Richard E. Rebis
  • Patent number: 6701052
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: March 2, 2004
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Publication number: 20030142941
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 31, 2003
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Publication number: 20030063875
    Abstract: A bridge fiber and a method of connecting two other dissimilar optical waveguide fibers is presented. The bridge fiber may be utilized to connect positive dispersion fibers or step index single mode fibers to compensative fibers, such as dispersion compensation fibers or dispersion-slope compensation fibers.
    Type: Application
    Filed: May 31, 2002
    Publication date: April 3, 2003
    Inventors: Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Martin Hempstead, Lisa L. Hepburn, Stephan L. Logunov
  • Publication number: 20030021561
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 30, 2003
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant