Patents by Inventor Pamela J. Wright

Pamela J. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952480
    Abstract: In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 9, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes M. Soulages, Arnold Lustiger, Thomas T. Sun, Pamela J. Wright, Madhavi Vadlamudi, Alexander I. Norman, Adriana S. Silva, David M. Fiscus, Timothy D. Shaffer
  • Publication number: 20210371632
    Abstract: In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
    Type: Application
    Filed: February 5, 2019
    Publication date: December 2, 2021
    Inventors: Johannes M. Soulages, Arnold Lustiger, Thomas T. Sun, Pamela J. Wright, Madhavi Vadlamudi, Alexander I. Norman, Adriana S. Silva, David M. Fiscus, Timothy D. Shaffer
  • Patent number: 10947375
    Abstract: A system for producing a functionalized olefinic-based polymer, the system comprising a polymerization zone for producing an olefinic-based polymer comprising a mixing section, a deliquifying section, and a quenching section, wherein at least one section of the polymerization zone has a defined cross-sectional area that continually decreases from a first end to a second end of said section; a devolatilization zone comprising a kneader or extruder, wherein said devolatilization zone is downstream of said polymerization zone and in fluid communication with said polymerization zone; and a functionalization zone downstream of said devolatilization zone and in fluid communication with said devolatilization zone.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 16, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yu Feng Wang, Richard D. Hembree, Michael F. McDonald, Jr., Joseph A. Maier, Richard C. M. Yeh, Leming Gu, Timothy D. Shaffer, Pamela J. Wright
  • Publication number: 20200255643
    Abstract: A system for producing a functionalized olefinic-based polymer, the system comprising a polymerization zone for producing an olefinic-based polymer comprising a mixing section, a deliquifying section, and a quenching section, wherein at least one section of the polymerization zone has a defined cross-sectional area that continually decreases from a first end to a second end of said section; a devolatilization zone comprising a kneader or extruder, wherein said devolatilization zone is downstream of said polymerization zone and in fluid communication with said polymerization zone; and a functionalization zone downstream of said devolatilization zone and in fluid communication with said devolatilization zone.
    Type: Application
    Filed: December 9, 2016
    Publication date: August 13, 2020
    Inventors: Yu Feng Wang, Richard D. Hembree, Michael F. McDonald, JR., Joseph A. Maier, Richard C.M. Yeh, Leming Gu, Timothy D. Shaffer, Pamela J. Wright
  • Patent number: 9458310
    Abstract: The present invention relates to polyethylene compositions comprising one or more ethylene polymers and one or more dendritic hydrocarbon polymer modifiers, in particular, this invention further relates to polyethylene blends comprising one or more ethylene polymers and one or more dendritic hydrocarbon polymer modifiers, wherein the modifier has: 1) a g? value less than 0.75; 2) a Cayley tree topology with a layer number of 2 or more more; and 3) a average Mw between the branch points of 1,500 g/mol or more.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pradeep P. Shirodkar, Jianya J. Cheng, Andy H. Tsou, Pamela J. Wright, Johannes M. Soulages
  • Patent number: 8623980
    Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Pamela J. Wright, Suzzy Chen Hsi Ho, Paul Edward Schuenzel
  • Patent number: 8513367
    Abstract: Method of reducing fouling in an elastomer polymerization process that includes providing a reactor capable of housing an industrial-scale elastomer polymerization reaction, and applying a mechanical force to the reactor so as to create a vibration in at least one wall of the reactor, in which fouling is reduced in the reactor. In one embodiment the reaction is an industrial scale butyl polymerization reaction and the reactor is a butyl polymerization reactor.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 20, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Timothy D. Shaffer, Pamela J. Wright, Limin Song
  • Publication number: 20130211008
    Abstract: The present invention relates to polyethylene compositions comprising one or more ethylene polymers and one or more dendritic hydrocarbon polymer modifiers, in particular, this invention further relates to polyethylene blends comprising one or more ethylene polymers and one or more dendritic hydrocarbon polymer modifiers, wherein the modifier has: 1) a g? value less than 0.75; 2) a Cayley tree topology with a layer number of 2 or more more; and 3) a average Mw between the branch points of 1,500 g/mol or more.
    Type: Application
    Filed: August 13, 2012
    Publication date: August 15, 2013
    Inventors: Pradeep P. SHIRODKAR, Jianya J. Cheng, Andy H. Tsou, Pamela J. Wright, Johannes M. Soulages
  • Patent number: 8487061
    Abstract: Provided is a process for making a saturated star hydrocarbon polymer. The process has the following steps: (A) hydrosilylating tetraethylene silicon with methyldichlorosilane in the presence of a hydrosilylating catalyst to form a chlorosilane dendrimer; (B) reacting the chlorosilane dendrimer with vinylmagnesium bromide in the presence of a lithium and/or organolithium initiator stepwise to build a higher generation chlorosilane dendrimer; (C) anionically polymerizing polybutadiene in the presence of a lithium and/or organolithium initiator to form living poly(butadienyl)lithium; (D) attaching the living poly(butadienyl)lithium to the higher generation dendrimer to form a star polybutadiene; and (E) hydrogenating the star polybutadiene to form the saturated star hydrocarbon polymer. There is also provided a saturated star hydrocarbon polymer made according to the above process and a polymer composition of a matrix ethylene polymer and the saturated star hydrocarbon polymer.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy H. Tsou, Nikos Hadjichristidis, Pamela J. Wright, Johannes M. Soulages
  • Publication number: 20120296046
    Abstract: Provided is a process for making a saturated star hydrocarbon polymer. The process has the following steps: (A) hydrosilylating tetraethylene silicon with methyldichlorosilane in the presence of a hydrosilylating catalyst to form a chlorosilane dendrimer; (B) reacting the chlorosilane dendrimer with vinylmagnesium bromide in the presence of a lithium and/or organolithium initiator stepwise to build a higher generation chlorosilane dendrimer; (C) anionically polymerizing polybutadiene in the presence of a lithium and/or organolithium initiator to form living poly(butadienyl)lithium; (D) attaching the living poly(butadienyl)lithium to the higher generation dendrimer to form a star polybutadiene; and (E) hydrogenating the star polybutadiene to form the saturated star hydrocarbon polymer. There is also provided a saturated star hydrocarbon polymer made according to the above process and a polymer composition of a matrix ethylene polymer and the saturated star hydrocarbon polymer.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy H. Tsou, Nikos Hadjichristidis, Pamela J. Wright, Johannes M. Soulages
  • Publication number: 20120157633
    Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 21, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Pamela J. Wright, Suzzy Chen Hsi Ho, Paul Edward Schuenzel
  • Publication number: 20120130026
    Abstract: Method of reducing fouling in an elastomer polymerization process that includes providing a reactor capable of housing an industrial-scale elastomer polymerization reaction, and applying a mechanical force to the reactor so as to create a vibration in at least one wall of the reactor, in which fouling is reduced in the reactor. In one embodiment the reaction is an industrial scale butyl polymerization reaction and the reactor is a butyl polymerization reactor.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 24, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Timothy D. SHAFFER, Pamela J. WRIGHT, George P. AKEHURST, Limin SONG
  • Patent number: 8178465
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 15, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Publication number: 20110111950
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7893176
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7557170
    Abstract: The method of polymerization includes the steps of a) providing a catalyst system, b) providing at least one monomer or comonomer mixture in a reaction vessel, c) introducing the catalyst into the reaction vessel, and d) polymerizing the at least one monomer or comonomer mixture to produce an isoolefin polymer. The catalyst may be soluble in the diluent used for polymerization. The polymerization contact surfaces of the reaction vessel have an arithmetic average surface roughness of less than 0.3 ?m (12 microinches).
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: July 7, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Pamela J. Wright, J. Davis Deborah, Michael F. McDonald
  • Publication number: 20090062484
    Abstract: The method of polymerization includes the steps of a) providing a catalyst system, b) providing at least one monomer or comonomer mixture in a reaction vessel, c) introducing the catalyst into the reaction vessel, and d) polymerizing the at least one monomer or comonomer mixture to produce an isoolefin polymer. The catalyst may be soluble in the diluent used for polymerization. The polymerization contact surfaces of the reaction vessel have an arithmetic average surface roughness of less than 0.3 ?m (12 microinches).
    Type: Application
    Filed: July 24, 2008
    Publication date: March 5, 2009
    Inventors: Timothy D. Shaffer, Pamela J. Wright, J. Davis Deborah, Michael F. McDonald
  • Publication number: 20090062496
    Abstract: Provided is a method for reducing depositions in polymerization vessels, where the method includes the steps of providing a reaction vessel having polymerization contact surfaces, polishing a majority of the polymerization contact surfaces to have an average percent excess surface areas (SAxs) of 2% or less, introducing a catalyst system and at least one monomer or comonomer mixture in the reaction vessel, and polymerizing the at least one monomer or comonomer mixture. The catalyst may be soluble in the diluent used for polymerization. The method may be useful for low temperature polymerization systems.
    Type: Application
    Filed: July 24, 2008
    Publication date: March 5, 2009
    Inventors: Timothy D. Shaffer, Pamela J. Wright, J. Davis Deborah, Michael F. McDonald
  • Publication number: 20080234447
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7402636
    Abstract: The disclosure provides a slurry polymerization system and method to decrease polymer deposition on reactor surfaces using an oxygenate such as alcohol (16) supplied to the polymerization medium (32) separate from the catalyst feed (34).
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright