Patents by Inventor Pang Lee

Pang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250040630
    Abstract: A luminous garment includes a garment body, a logo element, a power source, a control module, and an operation interface. The garment body is wearable by a user. The logo element is arranged on the surface of the garment body to emit light upon receiving an electrical current flowing therethrough. The operation interface is arranged for operation by the user to generate an operation signal and transmit the operation signal to the control module. The control module is arranged to control, according to the operation signal, a light emission mode of the logo element.
    Type: Application
    Filed: February 8, 2024
    Publication date: February 6, 2025
    Inventors: Chien-Pang LEE, Luly Pei YANG
  • Patent number: 12116906
    Abstract: A turbine vane in a gas turbine engine includes an inner platform, an outer platform, and a vane airfoil positioned therebetween. The vane airfoil includes a first cooling passage extending between the outer platform and the inner platform, and a second cooling passage extending between the outer platform and the inner platform. The second cooling passage is arranged downstream of the first cooling passage with respect to a flow direction. The turbine vane includes a jumper tube disposed between the second cooling passage and the inner platform. The jumper tube includes an inlet, an outlet, and a tube wall enclosing a hollow interior. The inlet is positioned a distance within the second cooling passage. The outlet is positioned at least partially through an aperture of the inner platform.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: October 15, 2024
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Daniel Joo, Ching-Pang Lee, Gm Salam Azad, Sin Chien Siw
  • Publication number: 20240295368
    Abstract: A water-cooling structure includes a heat sink, a cover plate, a heat exchange module, a retaining wall, and ribs. The heat sink has an inlet hole, an outlet hole, and an inner space which communicates with the inlet hole and the outlet hole. The cover plate is disposed on the heat sink to seal the inner space. The heat exchange module and the retaining wall are disposed on the cover plate and located in the inner space. The inlet hole and the outlet hole are disposed on different sides of the retaining wall. The ribs are disposed on the cover plate and form flow channels in the inner space. A coolant enters the inner space from the inlet hole, enters the flow channels along the retaining wall to contact the heat exchange module, and flows out of the outlet hole after passing through the heat exchange module.
    Type: Application
    Filed: January 12, 2024
    Publication date: September 5, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Wei-Pang Lee, Shih-Chieh Su, Shih-Kai Chou
  • Publication number: 20240076993
    Abstract: A turbine vane in a gas turbine engine includes an inner platform, an outer platform, and a vane airfoil positioned therebetween. The vane airfoil includes a first cooling passage extending between the outer platform and the inner platform, and a second cooling passage extending between the outer platform and the inner platform. The second cooling passage is arranged downstream of the first cooling passage with respect to a flow direction. The turbine vane includes a jumper tube disposed between the second cooling passage and the inner platform. The jumper tube includes an inlet, an outlet, and a tube wall enclosing a hollow interior. The inlet is positioned a distance within the second cooling passage. The outlet is positioned at least partially through an aperture of the inner platform.
    Type: Application
    Filed: January 6, 2021
    Publication date: March 7, 2024
    Inventors: Daniel Joo, Ching-Pang Lee, Gm Salam Azad, Sin Chien Siw
  • Patent number: 11415000
    Abstract: A turbine airfoil includes a trailing edge coolant cavity between a pressure sidewall and a suction sidewall. The trailing edge coolant cavity is positioned adjacent to and extending out to a trailing edge of the turbine airfoil. The interior includes an internal arrangement comprising an array of discrete fins formed aft of the trailing edge coolant cavity along the trailing edge.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 16, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Ching-Pang Lee, Jae Y. Um, Sin Chien Siw, Anthony Waywood, Harry Holloman, Steven Koester
  • Patent number: 11377956
    Abstract: A flow inducer assembly and a method for cooling turbine blades of a gas turbine engine are presented. The gas turbine engine includes a rotor disk having circumferentially distributed disk grooves and turbine blades. Each turbine blade includes a blade root inserted into blade mounting section of the disk groove. Seal plates are attached to an aft side circumference of the rotor disk. The flow inducer assembly is integrated to each seal plate at a side facing away from the rotor disk. The flow inducer assembly is configured to function as a paddle due to rotation of the rotor disk and the seal plate therewith during operation of the gas turbine engine to drive ambient air as a cooling fluid into the disk cavity and enter inside of the turbine blade from the blade root for cooling the turbine blade.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 5, 2022
    Assignee: SIEMENS ENERGY GLOBAL GMBH & CO. KG
    Inventors: Peter Schröder, Christopher W. Ross, Santiago R. Salazar, Patrick M. Pilapil, Roger Matthews, Kevin Kampka, Joana Verheyen, Ching-Pang Lee, Javan Albright, James McCoy, Sin Chien Siw, Kok-Mun Tham
  • Patent number: 11351473
    Abstract: The present disclosure provides an integrated design building block with turnable modules inside, the building block comprising: a lower housing, an upper housing, and a plurality of turnable modules mechanism, the lower housing and the upper housing being fitted to form a plurality of receiving spaces, the plurality of turnable modules being disposed within the plurality of receiving spaces, respectively, wherein the turnable modules may be partially or completely received in the receiving spaces, the turnable modules each having a turnable module connection portion; the lower housing and the upper housing are fitted to form a body structure of the building block; a plurality of connection portions are provided on surfaces of the body structure; the turnable module connection portions are fitted to the plurality of connection portions on the surfaces of the body structure. The building block provided by the present disclosure has advantages of a simple mechanical structure and a low cost.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 7, 2022
    Assignee: TransformCube Product Design Limited
    Inventor: Kai Pang Lee
  • Patent number: 11319819
    Abstract: A blade (10) for a turbine engine that includes an internal cooling system (56) formed from at least one cavity (58) positioned within a generally elongated airfoil (12). A squealer tip (36) and at least one densified oxide dispersion strengthened layer (38) extend radially from a radially outer tip cap (70) of the blade (10), the tip cap (70) having a tip cap upper surface (50).
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: May 3, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Kok-Mun Tham, Ching-Pang Lee, Li Shing Wong, Sin Chien Siw
  • Patent number: 11248472
    Abstract: A trailing edge cooling feature for a turbine airfoil (10) includes a plurality of pins (22a-l) positioned in an airfoil interior (11) toward the trailing edge 20), each extending from the pressure side (14) to the suction side (16) and further being elongated in a radial direction (R). The pins (22a-l) are arranged in multiple radial rows (A-L) spaced along the chordal axis (30), with the pins (22a-l) in each row (A-L) being interspaced to define coolant passages (24a-l) therebetween. A row of radially spaced apart partition walls (26) are positioned aft of the pins (22a-l). Each partition wall (26) extends from the pressure side (14) to the suction side (16) and is elongated in a generally axial direction, extending along the chordal axis (30) to terminate at the trailing edge (20).
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 15, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventor: Ching-Pang Lee
  • Patent number: 11193378
    Abstract: A turbine airfoil (10) includes a trailing edge coolant cavity (41f) located in an airfoil interior (11) between a pressure sidewall (14) and a suction sidewall (16). The trailing edge coolant cavity (41f) is positioned adjacent to a trailing edge (20) of the turbine airfoil (10) and is in fluid communication with a plurality of coolant exit slots (28) positioned along the trailing edge (20). At least one framing passage (70, 80) is formed at a span-wise end of the trailing edge coolant cavity (41f). The airfoil (10) further includes framing features (72A-B, 82A-B) located in the framing passage (70, 80). The framing features are configured as ribs (72A-B, 82A-B) protruding from the pressure sidewall (14) and/or the suction sidewall (16). The ribs (72A-B, 82A-B) extend partially between the pressure sidewall (14) and the suction sidewall (16).
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 7, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventor: Ching-Pang Lee
  • Publication number: 20210301664
    Abstract: A flow inducer assembly and a method for cooling turbine blades of a gas turbine engine are presented. The gas turbine engine includes a rotor disk having circumferentially distributed disk grooves and turbine blades. Each turbine blade includes a blade root inserted into blade mounting section of the disk groove. Seal plates are attached to aft side circumference of the rotor disk. The flow inducer assembly is integrated to each seal plate at a side facing away from the rotor disk. The flow inducer assembly is configured to function as a paddle due to rotation of the rotor disk and the seal plate therewith during operation of the gas turbine engine to drive ambient air as a cooling fluid into the disk cavity and enter inside of the turbine blade from blade root for cooling the turbine blade.
    Type: Application
    Filed: July 23, 2018
    Publication date: September 30, 2021
    Inventors: Peter Schröder, Christopher W. Ross, Santiago R. Salazar, Patrick M. Pilapil, Roger Matthews, Kevin Kampka, Joana Verheyen, Ching-Pang Lee, Javan Albright, James McCoy, Sin Chien Siw, Kok-Mun Tham
  • Patent number: 11111795
    Abstract: A blade airfoil for a turbine engine that includes an internal multiple pass serpentine flow cooling circuits with a leading edge circuit and a trailing edge circuit. The entrance of a cavity in the leading edge circuit has a narrowing of a cavity width that expands further downstream to a consistent cavity width similar to the cavity width of the rest of the leading edge circuit.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: September 7, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Ching-Pang Lee, Harry Holloman, Steven Koester, Jae Y. Um, Sin Chien Siw
  • Patent number: 11085306
    Abstract: An integrated airfoil and platform cooling system (30) for a turbine rotor blade (10) includes an inlet (38, 48) located at the root (24) for receiving a supply of a coolant (K), and at least one cooling leg (32a, 32c, 42a, 42c) fluidly connected to the inlet (38, 48) and configured for conducting the coolant (K) in a radially outboard direction. The cooling leg (32a, 32c, 42a, 42c) is defined at least partially by a span-wise extending internal cavity (26) within a blade airfoil (12). An entrance of the cooling leg (32a, 32c, 42a, 42c) comprises a flow passage (92, 102) that extends radially outboard and laterally into a blade platform (50), so as to direct a radially outboard flowing coolant (K) to impinge on an inner side (60) of a radially outer surface (52) of the blade platform (50), before leading the coolant (K) into the cooling leg (32a, 32c, 42a, 42c).
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 10, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Ching-Pang Lee, Anthony Waywood, Steven Koester
  • Patent number: 11009914
    Abstract: An electronic device includes a housing and a buffer component. The housing has a corner portion and two side edges adjacent to the corner portion. The buffer component is embedded in the corner portion and includes a strengthened layer and a buffer layer. The strengthened layer includes an arc-shaped side edge and an embedded portion. The embedded portion is embedded in the corner portion, such that the arc-shaped side edge is aligned with the two side edges. The strengthened layer is a strengthened material structure. The buffer layer is disposed between the strengthened layer and the housing, and the buffer layer is an elastic material structure.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 18, 2021
    Assignee: PEGATRON CORPORATION
    Inventors: Chien-I Chen, Wei-Pang Lee, Hsin-Lan Liao, Chen-Wei Lai, Yi-Lun Tsao, Jyun-Yi Lee
  • Publication number: 20210140321
    Abstract: A turbine airfoil includes a trailing edge coolant cavity between a pressure sidewall and a suction sidewall. The trailing edge coolant cavity is positioned adjacent to and extending out to a trailing edge of the turbine airfoil. The interior includes an internal arrangement comprising an array of discrete fins formed aft of the trailing edge coolant cavity along the trailing edge.
    Type: Application
    Filed: June 4, 2018
    Publication date: May 13, 2021
    Inventors: Ching-Pang Lee, Jae Y. Um, Sin Chien Siw, Anthony Waywood, Harry Holloman, Steven Koester
  • Patent number: 11002144
    Abstract: A shroud assembly for a turbine engine includes a seal for sealing a gap between a first mate face of a first shroud segment and a second mate face of a circumferentially adjacent second shroud segment. The seal is received in first and second slots formed respectively on the first and second mate faces. The first and second slots extend axially between a leading edge and a trailing edge of the respective shroud segment. The first slot is open at the leading and the trailing edges while the second slot is open at the leading edge and closed at the trailing edge. The seal has axially extending first and second sides which are receivable respectively within the first and second slots. The seal has an axial length substantially equal to tan axial length of the shroud segments and has a cutout on the second side at a trailing edge end of the seal.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: May 11, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Gm Salam Azad, Runzhong Chen, Ching-Pang Lee
  • Publication number: 20210025278
    Abstract: A blade airfoil for a turbine engine that includes an internal multiple pass serpentine flow cooling circuits with a leading edge circuit and a trailing edge circuit. The entrance of a cavity in the leading edge circuit has a narrowing of a cavity width that expands further downstream to a consistent cavity width similar to the cavity width of the rest of the leading edge circuit.
    Type: Application
    Filed: August 7, 2018
    Publication date: January 28, 2021
    Inventors: Ching-Pang Lee, Harry Holloman, Steven Koester, Jae Y. Um, Sin Chien Siw
  • Publication number: 20210010381
    Abstract: A shroud assembly for a turbine engine includes a seal for sealing a gap between a first mate face of a first shroud segment and a second mate face of a circumferentially adjacent second shroud segment. The seal is received in first and second slots formed respectively on the first and second mate faces. The first and second slots extend axially between a leading edge and a trailing edge of the respective shroud segment. The first slot is open at the leading and the trailing edges while the second slot is open at the leading edge and closed at the trailing edge. The seal has axially extending first and second sides which are receivable respectively within the first and second slots. The seal has an axial length substantially equal to tan axial length of the shroud segments and has a cutout on the second side at a trailing edge end of the seal.
    Type: Application
    Filed: March 30, 2018
    Publication date: January 14, 2021
    Inventors: Gm Salam Azad, Runzhong Chen, Ching-Pang Lee
  • Patent number: 10787911
    Abstract: A gas turbine engine airfoil includes an outer wall including a suction side, a pressure side, a leading edge, and a trailing edge, the outer wall defining an interior chamber of the airfoil. The airfoil further includes cooling structure provided in the interior chamber. The cooling structure defines an interior cooling cavity and includes a plurality of cooling fluid outlet holes, at least one of which is in communication with a pressure side cooling circuit and at least one of which is in communication with a suction side cooling circuit. At least one of the pressure and suction side cooling circuits includes: a plurality of rows of airfoils, wherein radially adjacent airfoils within a row define segments of cooling channels. Outlets of the segments in one row align aerodynamically with inlets of segments in an adjacent downstream row such that the cooling channels have a serpentine shape.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 29, 2020
    Assignees: SIEMENS ENERGY, INC., MIKRO SYSTEMS, INC.
    Inventors: Ching-Pang Lee, Benjamin Heneveld
  • Publication number: 20200291787
    Abstract: A turbine airfoil (10) includes a trailing edge coolant cavity (41f) located in an airfoil interior (11) between a pressure sidewall (14) and a suction sidewall (16). The trailing edge coolant cavity (41f) is positioned adjacent to a trailing edge (20) of the turbine airfoil (10) and is in fluid communication with a plurality of coolant exit slots (28) positioned along the trailing edge (20). At least one framing passage (70, 80) is formed at a span-wise end of the trailing edge coolant cavity (41f). The airfoil (10) further includes framing features (72A-B, 82A-B) located in the framing passage (70, 80). The framing features are configured as ribs (72A-B, 82A-B) protruding from the pressure sidewall (14) and/or the suction sidewall (16). The ribs (72A-B, 82A-B) extend partially between the pressure sidewall (14) and the suction sidewall (16).
    Type: Application
    Filed: October 24, 2016
    Publication date: September 17, 2020
    Inventor: Ching-Pang Lee