Patents by Inventor Pankaj Kalra

Pankaj Kalra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9318533
    Abstract: Methods for reducing location-based variations in the switching characteristics of memory cells within a memory array are described. In some cases, the resistance of an embedded resistor within each memory cell may be set to reduce the overall variation in series resistances for the memory cells within a memory array. For example, embedded resistors associated with far-far bits may be set to a lower resistance than embedded resistors associated with near-near bits. An embedded resistor may comprise a layer of polysilicon within a memory cell. Selective ion implantation may be used to reduce the embedded resistor resistance for memory cells within a particular region of the memory array and to form two or more different sets of embedded resistors within the memory array.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: April 19, 2016
    Assignee: SANDISK 3D LLC
    Inventors: Pankaj Kalra, Chandrasekhar Gorla, Masaaki Higashitani
  • Patent number: 8988936
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Grant
    Filed: October 4, 2014
    Date of Patent: March 24, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20150023113
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Application
    Filed: October 4, 2014
    Publication date: January 22, 2015
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20150023115
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Application
    Filed: October 4, 2014
    Publication date: January 22, 2015
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Patent number: 8934295
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Grant
    Filed: October 4, 2014
    Date of Patent: January 13, 2015
    Assignee: Sandisk 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20140353573
    Abstract: Methods for reducing location-based variations in the switching characteristics of memory cells within a memory array are described. In some cases, the resistance of an embedded resistor within each memory cell may be set to reduce the overall variation in series resistances for the memory cells within a memory array. For example, embedded resistors associated with far-far bits may be set to a lower resistance than embedded resistors associated with near-near bits. An embedded resistor may comprise a layer of polysilicon within a memory cell. Selective ion implantation may be used to reduce the embedded resistor resistance for memory cells within a particular region of the memory array and to form two or more different sets of embedded resistors within the memory array.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventors: Pankaj Kalra, Chandrasekhar Gorla, Masaaki Higashitani
  • Patent number: 8897064
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 25, 2014
    Assignee: Sandisk 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorta
  • Patent number: 8885400
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: November 11, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20140233327
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 21, 2014
    Applicant: SANDISK 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20140233329
    Abstract: Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: SANDISK 3D LLC
    Inventors: Yingchang Chen, Pankaj Kalra, Chandrasekhar Gorla
  • Publication number: 20130332227
    Abstract: A method of, system for, and article of manufacture for organizing and managing a household unit using a communications network. The method may include acquiring information from plural members of a household; acquiring planning information for a household-oriented goal(s); and sharing, with a third party via the network, data and content associated with the household-oriented goal(s) in order to solicit targeted quotes from the third party to accomplish the household-oriented goal(s).
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventors: Khannan Sankaran, Ashish Sanan, Shalesh Jawa, Pankaj Kalra
  • Patent number: 8547725
    Abstract: A method of programming a nonvolatile memory cell. The nonvolatile memory cell includes a diode steering element in series with a carbon storage element The method includes providing a first voltage to the nonvolatile memory cell. The first voltage reverse biases the diode steering element. The carbon storage element sets to a lower resistivity state.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: October 1, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, Roy Scheuerlein, Pankaj Kalra, Jingyan Zhang
  • Patent number: 8436447
    Abstract: In a first aspect, a memory cell is provided, the memory cell including: (a) a first conducting layer formed above a substrate; (b) a second conducting layer formed above the first conducting layer; (c) a structure formed between the first and second conducting layers, wherein the structure includes a sidewall that defines an opening extending between the first and second conducting layers, and wherein the structure is comprised of a material that facilitates selective, directional growth of carbon nano-tubes; and (d) a carbon-based switching layer that includes carbon nano-tubes formed on the sidewall of the structure. Numerous other aspects are provided.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 7, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Pankaj Kalra, Raghuveer S. Makala
  • Publication number: 20110260290
    Abstract: In a first aspect, a memory cell is provided, the memory cell including: (a) a first conducting layer formed above a substrate; (b) a second conducting layer formed above the first conducting layer; (c) a structure formed between the first and second conducting layers, wherein the structure includes a sidewall that defines an opening extending between the first and second conducting layers, and wherein the structure is comprised of a material that facilitates selective, directional growth of carbon nano-tubes; and (d) a carbon-based switching layer that includes carbon nano-tubes formed on the sidewall of the structure. Numerous other aspects are provided.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Inventors: Pankaj Kalra, Raghuveer S. Makala
  • Publication number: 20100142256
    Abstract: A method of programming a nonvolatile memory cell. The nonvolatile memory cell includes a diode steering element in series with a carbon storage element The method includes providing a first voltage to the nonvolatile memory cell. The first voltage reverse biases the diode steering element. The carbon storage element sets to a lower resistivity state.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 10, 2010
    Inventors: Tanmay KUMAR, Roy E. Scheuerlein, Pankaj Kalra, Jingyan Zhang