Patents by Inventor Paolo E. Pucci
Paolo E. Pucci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240010187Abstract: A method includes determining a desired yaw moment to be applied to an ego vehicle during travel. The method also includes identifying yaw moment changes that are achievable using different torque vectoring techniques supported by the ego vehicle. The method further includes selecting at least one of the torque vectoring techniques based on the identified yaw moment changes. In addition, the method includes using the at least one selected torque vectoring technique to obtain the desired yaw moment and create lateral movement of the ego vehicle during the travel. In some cases, a desired response time associated with the lateral movement of the ego vehicle may be used, where steering control provides a faster response time and torque vectoring control provides a slower response time. The at least one torque vectoring technique may be selected based on different energy efficiencies associated with different ones of the torque vectoring techniques.Type: ApplicationFiled: September 20, 2023Publication date: January 11, 2024Inventors: Kilsoo Kim, Jongmoo Choi, Vishal U. Shanbhag, Lung En Jan, Aviral K. Singh, Paolo E. Pucci
-
Patent number: 11845422Abstract: A method includes determining a desired yaw moment to be applied to an ego vehicle during travel. The method also includes identifying yaw moment changes that are achievable using different torque vectoring techniques supported by the ego vehicle. The method further includes selecting at least one of the torque vectoring techniques based on the identified yaw moment changes. In addition, the method includes using the at least one selected torque vectoring technique to obtain the desired yaw moment and create lateral movement of the ego vehicle during the travel. In some cases, a desired response time associated with the lateral movement of the ego vehicle may be used, where steering control provides a faster response time and torque vectoring control provides a slower response time. The at least one torque vectoring technique may be selected based on different energy efficiencies associated with different ones of the torque vectoring techniques.Type: GrantFiled: September 29, 2021Date of Patent: December 19, 2023Assignee: Canoo Technologies Inc.Inventors: Kilsoo Kim, Jongmoo Choi, Vishal U. Shanbhag, Lung En Jan, Aviral K. Singh, Paolo E. Pucci
-
Patent number: 11845465Abstract: A method includes identifying a path to be followed by an ego vehicle. The method also includes determining a desired yaw rate and a desired yaw acceleration for the ego vehicle based on the identified path. The method further includes determining a desired yaw moment for the ego vehicle based on the desired yaw rate and the desired yaw acceleration. In addition, the method includes distributing the desired yaw moment to multiple wheels of the ego vehicle such that the distributed desired yaw moment creates lateral movement of the ego vehicle during travel along the identified path. In some cases, the desired yaw rate and the desired yaw acceleration for the ego vehicle may be determined based on nonlinear kinematics of the ego vehicle, and the desired yaw moment for the ego vehicle may be determined based on a single-track dynamic model of the ego vehicle.Type: GrantFiled: September 29, 2021Date of Patent: December 19, 2023Assignee: Canoo Technologies Inc.Inventors: Kilsoo Kim, Jongmoo Choi, Vishal U. Shanbhag, Lung En Jan, Aviral K. Singh, Paolo E. Pucci
-
Publication number: 20230391394Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: ApplicationFiled: August 23, 2023Publication date: December 7, 2023Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11834110Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: March 23, 2022Date of Patent: December 5, 2023Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11814117Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: March 23, 2022Date of Patent: November 14, 2023Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11801866Abstract: A method includes identifying a desired path for an ego vehicle. The method also includes determining how to apply steering control and torque vectoring control to cause the ego vehicle to follow the desired path. The determination is based on actuator delays associated with the steering control and the torque vectoring control and one or more limits of the ego vehicle. The method further includes applying at least one of the steering control and the torque vectoring control to create lateral movement of the ego vehicle during travel. Determining how to apply the steering control and the torque vectoring control may include using a state-space model that incorporates first-order time delays associated with the steering control and the torque vectoring control and using a linear quadratic regulator to determine how to control the ego vehicle based on the state-space model and the one or more limits of the ego vehicle.Type: GrantFiled: September 29, 2021Date of Patent: October 31, 2023Assignee: Canoo Technologies Inc.Inventors: Kilsoo Kim, Paolo E. Pucci
-
Patent number: 11738800Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: June 2, 2021Date of Patent: August 29, 2023Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Publication number: 20230174040Abstract: A method includes identifying an actual path and a desired path for a vehicle, where the actual path represents an expected path for the vehicle based on current operation of the vehicle and the desired path represents an estimated path that a driver of the vehicle wants to follow. The method also includes identifying one or more errors between the actual path and the desired path. The method further includes determining how to apply torque vectoring to cause the vehicle to more closely follow the desired path based on the one or more errors. In addition, the method includes applying the torque vectoring to create lateral movement of the vehicle during travel.Type: ApplicationFiled: September 27, 2022Publication date: June 8, 2023Inventors: Kilsoo Kim, Paolo E. Pucci
-
Publication number: 20230124981Abstract: A method includes determining a desired yaw moment to be applied to an ego vehicle during travel. The method also includes identifying yaw moment changes that are achievable using different torque vectoring techniques supported by the ego vehicle. The method further includes selecting at least one of the torque vectoring techniques based on the identified yaw moment changes. In addition, the method includes using the at least one selected torque vectoring technique to obtain the desired yaw moment and create lateral movement of the ego vehicle during the travel. In some cases, a desired response time associated with the lateral movement of the ego vehicle may be used, where steering control provides a faster response time and torque vectoring control provides a slower response time. The at least one torque vectoring technique may be selected based on different energy efficiencies associated with different ones of the torque vectoring techniques.Type: ApplicationFiled: September 29, 2021Publication date: April 20, 2023Inventors: Kilsoo Kim, Jongmoo Choi, Vishal U. Shanbhag, Lung En Jan, Aviral K. Singh, Paolo E. Pucci
-
Publication number: 20230102778Abstract: A method includes identifying a path to be followed by an ego vehicle. The method also includes determining a desired yaw rate and a desired yaw acceleration for the ego vehicle based on the identified path. The method further includes determining a desired yaw moment for the ego vehicle based on the desired yaw rate and the desired yaw acceleration. In addition, the method includes distributing the desired yaw moment to multiple wheels of the ego vehicle such that the distributed desired yaw moment creates lateral movement of the ego vehicle during travel along the identified path. In some cases, the desired yaw rate and the desired yaw acceleration for the ego vehicle may be determined based on nonlinear kinematics of the ego vehicle, and the desired yaw moment for the ego vehicle may be determined based on a single-track dynamic model of the ego vehicle.Type: ApplicationFiled: September 29, 2021Publication date: March 30, 2023Inventors: Kilsoo Kim, Jongmoo Choi, Vishal U. Shanbhag, Lung En Jan, Aviral K. Singh, Paolo E. Pucci
-
Publication number: 20230094169Abstract: A method includes identifying a desired path for an ego vehicle. The method also includes determining how to apply steering control and torque vectoring control to cause the ego vehicle to follow the desired path. The determination is based on actuator delays associated with the steering control and the torque vectoring control and one or more limits of the ego vehicle. The method further includes applying at least one of the steering control and the torque vectoring control to create lateral movement of the ego vehicle during travel. Determining how to apply the steering control and the torque vectoring control may include using a state-space model that incorporates first-order time delays associated with the steering control and the torque vectoring control and using a linear quadratic regulator to determine how to control the ego vehicle based on the state-space model and the one or more limits of the ego vehicle.Type: ApplicationFiled: September 29, 2021Publication date: March 30, 2023Inventors: Kilsoo Kim, Paolo E. Pucci
-
Patent number: 11492040Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: February 10, 2022Date of Patent: November 8, 2022Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11492039Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: February 10, 2022Date of Patent: November 8, 2022Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11479293Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: February 10, 2022Date of Patent: October 25, 2022Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Patent number: 11465675Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: GrantFiled: February 10, 2022Date of Patent: October 11, 2022Assignee: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Publication number: 20220289281Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: ApplicationFiled: February 10, 2022Publication date: September 15, 2022Applicant: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Publication number: 20220289278Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: ApplicationFiled: February 10, 2022Publication date: September 15, 2022Applicant: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Publication number: 20220289280Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: ApplicationFiled: February 10, 2022Publication date: September 15, 2022Applicant: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci
-
Publication number: 20220289277Abstract: Described herein are steer-by-wire systems and methods of operating these systems in vehicles. A steer-by-wire system comprises a steering wheel assembly, comprising a steering wheel, sensors, and a torque generator. The system comprises a rack assembly, comprising a steering rack, sensors, and a rack actuator. The steering wheel assembly and the rack assembly are communicatively coupled by a steer-by-wire system controller, without having any direct mechanical links between the assemblies. In some examples, the controller instructs the rack assembly to control the steering rack position based on the steering input, such as changes in the steering wheel position. A steering map is used to determine the desired steering rack position based on the current steering wheel position. In some examples, a steering map is selected from a steering map set based on, e.g., the vehicle speed, vehicle direction, driver preference, and the like.Type: ApplicationFiled: June 2, 2021Publication date: September 15, 2022Applicant: Canoo Technologies Inc.Inventors: Ganesh Narasimhan, Paolo E. Pucci