Patents by Inventor Paolo Fantini

Paolo Fantini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220115068
    Abstract: Methods, systems, and devices related to techniques to access a self-selecting memory device are described. A self-selecting memory cell may store one or more bits of data represented by different threshold voltages of the self-selecting memory cell. A programming pulse may be varied to establish the different threshold voltages by modifying one or more time durations during which a fixed level of voltage or current is maintained across the self-selecting memory cell. The self-selecting memory cell may include a chalcogenide alloy. A non-uniform distribution of an element in the chalcogenide alloy may determine a particular threshold voltage of the self-selecting memory cell. The shape of the programming pulse may be configured to modify a distribution of the element in the chalcogenide alloy based on a desired logic state of the self-selecting memory cell.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 14, 2022
    Inventors: Innocenzo Tortorelli, Andrea Redaelli, Agostino Pirovano, Fabio Pellizzer, Mario Allegra, Paolo Fantini
  • Patent number: 11282895
    Abstract: Methods, systems, and devices for split pillar architectures for memory devices are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars may be divided to form first and second pillars.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: March 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Fabio Pellizzer, Lorenzo Fratin
  • Publication number: 20220077236
    Abstract: A vertical 3D memory device may comprise: a substrate including a plurality of conductive contacts each coupled with a respective one of a plurality of digit lines; a plurality of word line plates separated from one another with respective dielectric layers on the substrate, the plurality of word line plates including at least a first set of word lines separated from at least a second set of word lines with a dielectric material extending in a serpentine shape and at least a third set of word lines separated from at least a fourth set of word lines with a dielectric material extending in a serpentine shape; at least one separation layer separating the first set of word lines and the second set of word lines from the third set of word lines and the fourth set of word lines, wherein the at least one separation layer is parallel to both a digit line and a word line; and a plurality of storage elements each formed in a respective one of a plurality of recesses such that a respective storage element is surrounded
    Type: Application
    Filed: October 8, 2021
    Publication date: March 10, 2022
    Inventors: Paolo Fantini, Corrado Villa, Paolo Tessariol
  • Publication number: 20220051944
    Abstract: A method for manufacturing a 3D vertical array of memory cells is disclosed. The method comprises: forming on a substrate a stack of dielectric material layers comprising first and second dielectric material layers alternated to each other; forming holes through the stack of dielectric material layers, said holes exposing the substrate; selectively removing the second material layers through said holes to form cavities between adjacent first dielectric material layers; filling said cavities with a conductive material through said holes to form corresponding conductive material layers; forming first memory cell access lines from said conductive material layers; carrying out a conformal deposition of a chalcogenide material through said holes; forming memory cell storage elements from said deposed chalcogenide material; filling said holes with conductive material to form corresponding second memory cell access lines.
    Type: Application
    Filed: March 18, 2020
    Publication date: February 17, 2022
    Inventors: Paolo Fantini, Lorenzo Fratin, Paolo Tessariol
  • Patent number: 11244855
    Abstract: Architectures of 3D memory arrays, systems, and methods regarding the same are described. An array may include a substrate arranged with conductive contacts in a geometric pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, a sacrificial layer may be deposited in a trench that forms a serpentine shape. Portions of the sacrificial layer may be removed to form openings, into which cell material is deposited. An insulative material may be formed in contact with the sacrificial layer. The conductive pillars extend substantially perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. A chalcogenide material may be formed in the recesses partially around the conductive pillars.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 8, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20210408121
    Abstract: An example three-dimensional (3-D) memory array includes a substrate material including a plurality of conductive contacts arranged in a staggered pattern and a plurality of planes of a conductive material separated from one another by a first insulation material formed on the substrate material. Each of the plurality of planes of the conductive material includes a plurality of recesses formed therein. A second insulation material is formed in a serpentine shape through the insulation material and the conductive material. A plurality of conductive pillars are arranged to extend substantially perpendicular to the plurality of planes of the conductive material and the substrate and each respective conductive pillar is coupled to a different respective one of the conductive contacts. A chalcogenide material is formed in the plurality of recesses such that the chalcogenide material in each respective recess is formed partially around one of the plurality of conductive pillars.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Paolo Fantini, Lorenzo Fratin
  • Patent number: 11195579
    Abstract: The disclosed technology generally relates to memory apparatuses and methods of operating the same, and more particularly to a memory device having a controller configured to cause a write operation to be performed on a variable resistance memory cell, which includes application of two successive access pulses having opposite polarities, and methods of using the same.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Micron Technology Inc.
    Inventors: Paolo Fantini, Daniele Ielmini, Nicola Ciocchini
  • Patent number: 11158673
    Abstract: A vertical 3D memory device may comprise: a substrate including a plurality of conductive contacts each coupled with a respective one of a plurality of digit lines; a plurality of word line plates separated from one another with respective dielectric layers on the substrate, the plurality of word line plates including at least a first set of word lines separated from at least a second set of word lines with a dielectric material extending in a serpentine shape and at least a third set of word lines separated from at least a fourth set of word lines with a dielectric material extending in a serpentine shape; at least one separation layer separating the first set of word lines and the second set of word lines from the third set of word lines and the fourth set of word lines, wherein the at least one separation layer is parallel to both a digit line and a word line; and a plurality of storage elements each formed in a respective one of a plurality of recesses such that a respective storage element is surrounded
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Corrado Villa, Paolo Tessariol
  • Patent number: 11152065
    Abstract: Methods, systems, and devices related to techniques to access a self-selecting memory device are described. A self-selecting memory cell may store one or more bits of data represented by different threshold voltages of the self-selecting memory cell. A programming pulse may be varied to establish the different threshold voltages by modifying one or more time durations during which a fixed level of voltage or current is maintained across the self-selecting memory cell. The self-selecting memory cell may include a chalcogenide alloy. A non-uniform distribution of an element in the chalcogenide alloy may determine a particular threshold voltage of the self-selecting memory cell. The shape of the programming pulse may be configured to modify a distribution of the element in the chalcogenide alloy based on a desired logic state of the self-selecting memory cell.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: October 19, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Andrea Redaelli, Agostino Pirovano, Fabio Pellizzer, Mario Allegra, Paolo Fantini
  • Patent number: 11152427
    Abstract: Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A memory device, such as a selector device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. A selector device, for instance, may have a composition of selenium, arsenic, and at least one of boron, aluminum, gallium, indium, or thallium. The selector device may also be composed of germanium or silicon, or both. The relative amount of boron, aluminum, gallium, indium, or thallium may affect a threshold voltage of a memory component, and the relative amount may be selected accordingly. A memory component may, for instance have a composition that includes selenium, arsenic, and some combination of germanium, silicon, and at least one of boron, aluminum, gallium, indium, or thallium.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: October 19, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, F. Daniel Gealy, Enrico Varesi, Swapnil A. Lengade
  • Patent number: 11121180
    Abstract: An example three-dimensional (3-D) memory array includes a substrate material including a plurality of conductive contacts arranged in a staggered pattern and a plurality of planes of a conductive material separated from one another by a first insulation material formed on the substrate material. Each of the plurality of planes of the conductive material includes a plurality of recesses formed therein. A second insulation material is formed in a serpentine shape through the insulation material and the conductive material. A plurality of conductive pillars are arranged to extend substantially perpendicular to the plurality of planes of the conductive material and the substrate and each respective conductive pillar is coupled to a different respective one of the conductive contacts. A chalcogenide material is formed in the plurality of recesses such that the chalcogenide material in each respective recess is formed partially around one of the plurality of conductive pillars.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: September 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Lorenzo Fratin
  • Patent number: 11114615
    Abstract: Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A component of a memory cell, such as a selector device, storage device, or self-selecting memory device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. The chalcogenide material, for instance, may have a composition of selenium, germanium, and at least one of boron, aluminum, gallium, indium, or thallium. The chalcogenide material may in some cases also include arsenic, but may in some cases lack arsenic.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: September 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Enrico Varesi, Paolo Fantini, Lorenzo Fratin, Swapnil A. Lengade
  • Publication number: 20210225938
    Abstract: A vertical 3D memory device may comprise: a substrate including a plurality of conductive contacts each coupled with a respective one of a plurality of digit lines; a plurality of word line plates separated from one another with respective dielectric layers on the substrate, the plurality of word line plates including at least a first set of word lines separated from at least a second set of word lines with a dielectric material extending in a serpentine shape and at least a third set of word lines separated from at least a fourth set of word lines with a dielectric material extending in a serpentine shape; at least one separation layer separating the first set of word lines and the second set of word lines from the third set of word lines and the fourth set of word lines, wherein the at least one separation layer is parallel to both a digit line and a word line; and a plurality of storage elements each formed in a respective one of a plurality of recesses such that a respective storage element is surrounded
    Type: Application
    Filed: December 18, 2019
    Publication date: July 22, 2021
    Inventors: Paolo Fantini, Corrado Villa, Paolo Tessariol
  • Publication number: 20210225934
    Abstract: Methods, systems, and devices for memory device with a split pillar architecture are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars and cell material may be divided to form a first and second storage components and first and second pillars.
    Type: Application
    Filed: February 2, 2021
    Publication date: July 22, 2021
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Paolo Fantini
  • Patent number: 11056649
    Abstract: Methods, systems, and devices for operating memory cell(s) using transition metal doped GST are described. As discussed herein, a composition including germanium (Ge), antimony (Sb), tellurium (Te), and at least one of yttrium (Y) and scandium (Sc) may be used as a memory element in a memory cell. For example, a memory element may include a composition having Ge in an amount ranging from 15 to 35 atomic percent (at. %) of the composition, Sb in an amount less than or equal to 50 at. % of the composition, Te in an amount greater than or equal to 40 at. % of the composition, and at least one of Y and Sc in an amount ranging from 0.15 to 10 at. % of the composition.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: July 6, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Marco Bernasconi, Silvia Gabardi
  • Patent number: 11005038
    Abstract: A semiconductor structure includes stack structures. Each of the stack structures comprises a first conductive material, a chalcogenide material over the first conductive material, a second conductive material over the chalcogenide material, and a first dielectric material between the chalcogenide material and the first conductive material and between the chalcogenide material and the second conductive material. The semiconductor structure further comprises a second dielectric material on at least sidewalls of the chalcogenide material. The chalcogenide material may be substantially encapsulated by one or more dielectric materials. Related semiconductor structures and related methods are disclosed.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 11, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Agostino Pirovano
  • Patent number: 10957388
    Abstract: Embodiments disclosed herein may relate to programming a multi-level memory cell with programming pulse sequences that comprise forward-biased and reverse-biased programming pulses.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Massimo Ferro
  • Publication number: 20210056382
    Abstract: Apparatuses and methods for implementing artificial synapses utilizing SSM cells. A leaky-integrate-and-fire circuit can provide a feedback signal to an SSM cell responsive to a threshold quantity of pulses being applied to the gate from the signal line. A resulting state of the SSM cell can be dependent on a time difference between a latest of the threshold quantity of pulses and an initial pulse of the feedback signal.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventor: Paolo Fantini
  • Patent number: 10930707
    Abstract: Methods, systems, and devices for memory device with a split pillar architecture are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars and cell material may be divided to form a first and second storage components and first and second pillars.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Paolo Fantini
  • Publication number: 20210005665
    Abstract: Methods, systems, and devices for split pillar architectures for memory devices are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars may be divided to form first and second pillars.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Paolo Fantini, Fabio Pellizzer, Lorenzo Fratin