Patents by Inventor Paolo Mele

Paolo Mele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10283691
    Abstract: Briefly, the present disclosure relates to a nanocomposite thermoelectric energy converter comprising a composite thin film inorganic semiconductor having carbonized polymer nano-clusters and the net of polymer nano-fibers included within. The carbonized polymer nano-clusters and nano-fibers improve the thermoelectric figure of merit ZT by increasing electrical conductivity and decreasing thermal conductivity. The converter may be fabricated by a dual beam pulsed laser deposition process. A first laser beam evaporates a target comprising the materials of the inorganic semiconductor. A second laser beam evaporates the polymer using a matrix assisted target for depositing the polymer concurrently with the semiconductor deposition to yield the composite film. The lasers may be separately controlled to determine the resulting composition. The converter may be deposited on rigid or flexible substrates for a wide range of applications.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: May 7, 2019
    Assignee: Dillard University
    Inventors: Abdalla Darwish, Sergey Sarkisov, Paolo Mele
  • Publication number: 20160056361
    Abstract: Briefly, the present disclosure relates to a nanocomposite thermoelectric energy converter comprising a composite thin film inorganic semiconductor having carbonized polymer nano-clusters and the net of polymer nano-fibers included within. The carbonized polymer nano-clusters and nano-fibers improve the thermoelectric figure of merit ZT by increasing electrical conductivity and decreasing thermal conductivity. The converter may be fabricated by a dual beam pulsed laser deposition process. A first laser beam evaporates a target comprising the materials of the inorganic semiconductor. A second laser beam evaporates the polymer using a matrix assisted target for depositing the polymer concurrently with the semiconductor deposition to yield the composite film. The lasers may be separately controlled to determine the resulting composition. The converter may be deposited on rigid or flexible substrates for a wide range of applications.
    Type: Application
    Filed: September 14, 2015
    Publication date: February 25, 2016
    Inventors: Abdalla Darwish, Sergey Sarkisov, Paolo Mele