Patents by Inventor Paolo Pirjanian

Paolo Pirjanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100228421
    Abstract: The invention is generally related to the estimation of position and orientation of an object with respect to a local or a global coordinate system using reflected light sources. A typical application of the method and apparatus includes estimation and tracking of the position of a mobile autonomous robot. Other applications include estimation and tracking of an object for position-aware, ubiquitous devices. Additional applications include tracking of the positions of people or pets in an indoor environment. The methods and apparatus comprise one or more optical emitters, one or more optical sensors, signal processing circuitry, and signal processing methods to determine the position and orientation of at least one of the optical sensors based at least in part on the detection of the signal of one or more emitted light sources reflected from a surface.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 9, 2010
    Applicant: EVOLUTION ROBOTICS, INC.
    Inventors: Enrico DiBernardo, Paolo Pirjanian
  • Patent number: 7774158
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 10, 2010
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, Enrico Di Bernardo, Paolo Pirjanian, L. Niklas Karlsson
  • Patent number: 7720554
    Abstract: The invention is generally related to the estimation of position and orientation of an object with respect to a local or a global coordinate system using reflected light sources. A typical application of the method and apparatus includes estimation and tracking of the position of a mobile autonomous robot. Other applications include estimation and tracking of an object for position-aware, ubiquitous devices. Additional applications include tracking of the positions of people or pets in an indoor environment. The methods and apparatus comprise one or more optical emitters, one or more optical sensors, signal processing circuitry, and signal processing methods to determine the position and orientation of at least one of the optical sensors based at least in part on the detection of the signal of one or more emitted light sources reflected from a surface.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: May 18, 2010
    Assignee: Evolution Robotics, Inc.
    Inventors: Enrico DiBernardo, Paolo Pirjanian
  • Patent number: 7679532
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 16, 2010
    Assignee: Evolution Robotics, Inc.
    Inventors: L. Nicklas Karlsson, Paolo Pirjanian, Luis Filipe Domingues Goncalves, Enrico Di Bernardo
  • Publication number: 20090281661
    Abstract: A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
    Type: Application
    Filed: April 24, 2009
    Publication date: November 12, 2009
    Applicant: EVOLUTION ROBOTICS
    Inventors: Michael Dooley, Paolo Pirjanian, Nikolai Romanov, Lihu Chiu, Enrico Di Bernardo, Michael Stout, Gabriel Brisson
  • Patent number: 7573403
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: August 11, 2009
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, L. Niklas Karlsson, Paolo Pirjanian, Enrico Di Bernardo
  • Publication number: 20090081923
    Abstract: A vehicle chase game includes a first game object and a second game object. A second game object scans for a projected spot on an overhead surface. The second game object detects the projected spot on the overhead surface and gathers location information based on the detected projected spot. The second game object generates a position of a first game object based on the location information. The second game object transfers the position of the first game object to the chase game application program. The chase game application program selects a behavior based on the position of the first game object, where a goal of the behavior is to drive the second game object to intercept the first game object. The chase game application program sends instructions to the second game object's mechanical and electrical systems to execute the selected behaviors.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 26, 2009
    Applicant: Evolution Robotics
    Inventors: Michael Dooley, Nikolai Romanov, Paolo Pirjanian, Lihu Chiu, Enrico Di Bernardo
  • Publication number: 20090082879
    Abstract: An integrated intelligent system includes a first intelligent electronic device, a second intelligent electronic device, a transferable intelligent control device (TICD) and a cross product bus. The first intelligent electronic device performs a first function and the second intelligent electronic device performs a second function. The cross product bus couples the first intelligent electronic device to the transferable intelligent control device. The TICD partially controls behaviors of the intelligent electronic device by sending commands over the cross product bus to the first intelligent electronic device and the TICD partially controls behaviors of the second intelligent electronic device to perform the second function. The TICD is first attached to the first intelligent electronic device to partially control the behaviors of the first electronic device, then detached from the first electronic device, and then attached to the second intelligent electronic device to perform the second function.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 26, 2009
    Applicant: EVOLUTION ROBOTICS
    Inventors: Michael Dooley, Nikolai Romanov, Paolo Pirjanian
  • Publication number: 20080071423
    Abstract: Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
    Type: Application
    Filed: November 27, 2007
    Publication date: March 20, 2008
    Applicant: Evolution Robotics, Inc.
    Inventors: Thomas Murray, IV, Baoquoc Pham, Paolo Pirjanian
  • Patent number: 7302312
    Abstract: Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: November 27, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Thomas J. Murray, IV, Baoquoc N. Pham, Paolo Pirjanian
  • Publication number: 20070262884
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Application
    Filed: November 22, 2006
    Publication date: November 15, 2007
    Applicant: Evolution Robotics, Inc.
    Inventors: Luis Goncalves, L. Karlsson, Paolo Pirjanian, Enrico Di Bernardo
  • Patent number: 7283983
    Abstract: Media and gesture recognition apparatus and methods are disclosed. A computerized system views a first printed media using an electronic visual sensor. The system retrieves information corresponding to the viewed printed media from a database. Using the electronic visual sensor, the system views at least a first user gesture relative to at least a portion of the first printed media. The system interprets the gesture as a command, and based at least in part on the first gesture and the retrieved information, the system electronically speaks aloud at least a portion of the retrieved information.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: October 16, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Michael J. Dooley, Barton Elliot Listick, Paolo Pirjanian
  • Patent number: 7272467
    Abstract: Apparatus and methods that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: September 18, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, L. Niklas Karlsson, Paolo Pirjanian, Enrico Di Bernardo
  • Publication number: 20070090973
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Application
    Filed: November 13, 2006
    Publication date: April 26, 2007
    Applicant: Evolution Robotics, Inc.
    Inventors: L. Karlsson, Paolo Pirjanian, Luis Goncalves, Enrico Bernardo
  • Publication number: 20070050088
    Abstract: Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
    Type: Application
    Filed: July 11, 2006
    Publication date: March 1, 2007
    Inventors: Thomas Murray, Baoquoc Pham, Paolo Pirjanian
  • Patent number: 7177737
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 13, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: L. Niklas Karlsson, Luis Filipe Domingues Goncalves, Enrico Di Bernardo, Paolo Pirjanian
  • Patent number: 7162056
    Abstract: The invention is related to methods and apparatus that detect motion by monitoring images from a video camera mounted on a mobile robot, such as an autonomously navigated mobile robot. Examples of such robots include automated vacuum floor sweepers. Advantageously, embodiments of the invention can automatically sense a robot's motional state in a relatively reliable and cost-efficient manner. Many configurations of robots are configured to include at least one video camera. Embodiments of the invention permit the use of a video camera onboard a robot to determine a motional state for the robot. This can advantageously permit the motional state of a robot to be determined at a fraction of the cost of additional sensors, such as a laser, an infrared, an ultrasonic, or a contact sensor.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: January 9, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Michael Christopher Burl, Paolo Pirjanian
  • Patent number: D625059
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 5, 2010
    Assignee: Evolution Robotics
    Inventors: Josh Morenstein, Yves Behar, Christopher Hibmacronan, Seth Murray, Paolo Pirjanian, Mike Dooley
  • Patent number: D625060
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 5, 2010
    Assignee: Evolution Robotics
    Inventors: Josh Morenstein, Yves Behar, Christopher Hibmacronan, Seth Murray, Paolo Pirjanian, Mike Dooley
  • Patent number: D625062
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 5, 2010
    Assignee: Evolution Robotics
    Inventors: Josh Morenstein, Yves Behar, Christopher Hibmacronan, Seth Murray, Paolo Pirjanian, Mike Dooley