Patents by Inventor Parag Deotare

Parag Deotare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798157
    Abstract: The present disclosure relates to non-destructive methods for collecting data from three-dimensional objects. Method include directing one or more interrogating beams of light towards a surface of a three-dimensional object, where the three-dimensional object includes one or more underlying surfaces, and one or more materials having excitonic properties are disposed on the surface of the three-dimensional object; capturing, using an imaging device, optic response of the one or more materials having excitonic properties to the one or more interrogation beams; and computing, using the imaging device, a distance between the one or more underlying surfaces and the one or more materials having excitonic properties, where the optic response of the one or more materials having excitonic properties is a function of the distance between the one or more materials having excitonic properties and the one or more underlying surfaces.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 24, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Parag Deotare, Zidong Li, Kanak Datta
  • Publication number: 20230299020
    Abstract: An anti-tamper module includes a substrate and a photoisomerization (PI) layer formed on the substrate. The PI layer comprises molecules configured to transition from a first state to a second state in response to exposure to a first type of light and transition from the second state to the first state in response to exposure to a second type of light, and transitioning a selected portion of the PI layer to the first state while surrounding portions of the PI layer remain in the second state causes physical deformation of the PI layer. An excitonic layer is arranged on the PI layer. An electrical characteristic of the excitonic layer is sensitive to strain caused by the physical deformation of the PI layer such that an excitonic property of the excitonic layer changes in a region corresponding to the selected portion of the PI layer.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Jinsang KIM, Parag DEOTARE, Da Seul YANG, Che-Hsuan CHENG
  • Publication number: 20220093530
    Abstract: An anti-tamper module includes a substrate and a photoisomerization (PI) layer formed on the substrate. The PI layer comprises molecules configured to transition from a first state to a second state in response to exposure to a first type of light and transition from the second state to the first state in response to exposure to a second type of light, and transitioning a selected portion of the PI layer to the first state while surrounding portions of the PI layer remain in the second state causes physical deformation of the PI layer. An excitonic layer is arranged on the PI layer. An electrical characteristic of the excitonic layer is sensitive to strain caused by the physical deformation of the PI layer such that an excitonic property of the excitonic layer changes in a region corresponding to the selected portion of the PI layer.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 24, 2022
    Inventors: Jinsang KIM, Parag Deotare, Da Seul Yang, Che-Hsuan Cheng
  • Publication number: 20210110524
    Abstract: The present disclosure relates to non-destructive methods for collecting data from three-dimensional objects. Method include directing one or more interrogating beams of light towards a surface of a three-dimensional object, where the three-dimensional object includes one or more underlying surfaces, and one or more materials having excitonic properties are disposed on the surface of the three-dimensional object; capturing, using an imaging device, optic response of the one or more materials having excitonic properties to the one or more interrogation beams; and computing, using the imaging device, a distance between the one or more underlying surfaces and the one or more materials having excitonic properties, where the optic response of the one or more materials having excitonic properties is a function of the distance between the one or more materials having excitonic properties and the one or more underlying surfaces.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 15, 2021
    Inventors: Parag DEOTARE, Zidong LI, Kanak DATTA
  • Patent number: 9991076
    Abstract: Electromechanical devices described herein may employ tunneling phenomena to function as low-voltage switches. Opposing electrodes may be separated by an elastically deformable layer which, in some cases, may be made up of a non-electrically conductive material. In some embodiments, the elastically deformable layer is substantially free of electrically conductive material. When a sufficient actuation voltage and/or force is applied, the electrodes are brought toward one another and, accordingly, the elastically deformable layer is compressed. Though, the elastically deformable layer prevents the electrodes from making direct contact with one another. Rather, when the electrodes are close enough to one another, a tunneling current arises therebetween. The elastically deformable layer may exhibit spring-like behavior such that, upon release of the actuation voltage and/or force, the separation distance between electrodes is restored.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: June 5, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey H. Lang, Hae-Seung Lee, Timothy M. Swager, Trisha L. Andrew, Matthew Eric D'Asaro, Parag Deotare, Apoorva Murarka, Farnaz Niroui, Ellen Sletten, Annie I-Jen Wang
  • Publication number: 20150357142
    Abstract: Electromechanical devices described herein may employ tunneling phenomena to function as low-voltage switches. Opposing electrodes may be separated by an elastically deformable layer which, in some cases, may be made up of a non-electrically conductive material. In some embodiments, the elastically deformable layer is substantially free of electrically conductive material. When a sufficient actuation voltage and/or force is applied, the electrodes are brought toward one another and, accordingly, the elastically deformable layer is compressed. Though, the elastically deformable layer prevents the electrodes from making direct contact with one another. Rather, when the electrodes are close enough to one another, a tunneling current arises therebetween. The elastically deformable layer may exhibit spring-like behavior such that, upon release of the actuation voltage and/or force, the separation distance between electrodes is restored.
    Type: Application
    Filed: January 28, 2014
    Publication date: December 10, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey H. Lang, Hae-Seung Lee, Timothy M. Swager, Trisha L. Andrew, Matthew Eric D'Asaro, Parag Deotare, Apoorva Murarka, Farnaz Niroui, Ellen Sletten, Annie I-Jen Wang