Patents by Inventor Parash Kalita

Parash Kalita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240269739
    Abstract: Disclosed herein are nanohybrid and nanocomposite compositions and methods. In a specific embodiment, the method for making a nanohybrid composition includes: contacting a carrier material with metallic salt precursors to make a first mixture, contacting the first mixture with a reducing agent reacting and a surface activated agent to make a second mixture, where the metallic salt precursors undergo chemical reduction to make metallic nanoparticles, and where the metallic nanoparticles are deposited onto the carrier material, contacting the second mixture with an organosilane coupling agent to make a nanohybrid composition.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 15, 2024
    Applicant: P&S Global Holdings LLC
    Inventors: Parash KALITA, Jiang Wenping, Rustom Mody
  • Publication number: 20240180161
    Abstract: This invention relates to forming unique nanohybrid structures through selective integration of inorganic antimicrobial nanoparticles with other inorganic and organic materials and then, chemically bonding the nanohybrid structures to organic polymers for application as surface coatings, antimicrobial surfacing, food packaging, biomedical, agricultural, air-filtration/cleaning and water filtration/cleaning applications to kill, inhibit, and/or reduce the growth of pathogenic/infectious/contaminating microorganisms and their biofilms.
    Type: Application
    Filed: May 14, 2021
    Publication date: June 6, 2024
    Applicant: P&S Global Holdings LLC
    Inventors: Parash KALITA, Rustom MODY
  • Publication number: 20230151293
    Abstract: In one or more embodiments, this application relates to tribotechnical additive and lubricant compositions based on self-assembled carbon nanoarchitectonics derived through nanoscale modifications of organosilane-functionalized nanocarbon with one or multiple combinations of organo-molybdenum, organo-boron, organo-sulfur, organo-phosphorus, and heterocyclic compounds. The novel lubricant is characterized by having a composition comprising (A) one or more types of the novel additive compositions, (B) Base oil//lubricant, and optionally (C) one or more additives selected from the group including antioxidants, dispersants, detergents, anti-wear additives, extreme pressure additives, friction modifiers, viscosity index modifiers, seal swell additives, defoamers, pour point depressants and corrosion/rust inhibitors.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 18, 2023
    Applicant: P & S Global Holdings, LLC
    Inventor: Parash KALITA
  • Publication number: 20220380677
    Abstract: This invention relates to nanohybrid compositions derived from surface activation of halogenated and/or non-halogenated flame retardant (FR) materials with nanostructured copper and/or its oxides. The present disclosure also relates to polymer compositions manufactured by incorporating and reinforcing polymers/copolymers with nanohybrid compositions as flame retardant additives for enhanced fire resistance, smoke suppression, and antimicrobial capabilities. In one or more embodiments, the polymers and article of manufacture to which the particles are applied may have on or more of the following attributes: temperature adaptable flame retardant behavior, Enhanced suppression of flammable gas and smoke, catalysis of charring or thermal oxidative promotion of charring through the oxides of metals, enhanced heat sink behavior, and/or antimicrobial behavior.
    Type: Application
    Filed: May 14, 2021
    Publication date: December 1, 2022
    Applicant: P & S Global Holdings, LLC
    Inventors: Parash KALITA, Wenping JIANG
  • Patent number: 10246595
    Abstract: A multifunctional material composition functioning as a halogen-free flame-retardant finish combined with in certain implementations one or both of antimicrobial and insect-repellant is nanomanufactured by the absorption/adsorption of metallic salts with one or more additional compounds by inorganic crystallites. The identity of the additional compounds is determined by the desired functionality of the substrate. The material composition can be chemically and mechanically applied to substrates (e.g. to cotton, nylon, and polyester based textile fabrics), for example, to yield durable antimicrobial, insecticidal, and environmentally friendly flame retardant materials. The addition of nano-scale metallic deposits to a phosphorous-rich and nitrogen-rich architecture complex improves the flame retardant properties of the substrates.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: April 2, 2019
    Assignee: NanoMech, Inc.
    Inventor: Parash Kalita
  • Patent number: 10155325
    Abstract: Open-architecture constituents, such as wood fibers, are coated with an intercalated functional material and bound together to form a solid product, such as a plank. Applications for this material include decking, fencing, and the like. The functional material is applied prior to forming the solid product, either as a coating on each fiber or inserted in a fiber or fiber cluster. As the constituents, such as fibers, wear during use of the product, the functional material is released to provide continual protection of the product, such as UV resistance and fungal resistance.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: December 18, 2018
    Assignee: NanoMech, Inc.
    Inventors: Parash Kalita, Wenping Jiang
  • Publication number: 20150210865
    Abstract: A multifunctional material composition functioning as a halogen-free flame-retardant finish combined with in certain implementations one or both of antimicrobial and insect-repellant is nanomanufactured by the absorption/adsorption of metallic salts with one or more additional compounds by inorganic crystallites. The identity of the additional compounds is determined by the desired functionality of the substrate. The material composition can be chemically and mechanically applied to substrates (e.g. to cotton, nylon, and polyester based textile fabrics), for example, to yield durable antimicrobial, insecticidal, and environmentally friendly flame retardant materials. The addition of nano-scale metallic deposits to a phosphorous-rich and nitrogen-rich architecture complex improves the flame retardant properties of the substrates.
    Type: Application
    Filed: January 29, 2015
    Publication date: July 30, 2015
    Inventor: Parash Kalita
  • Publication number: 20140178629
    Abstract: Open-architecture constituents, such as wood fibers, are coated with an intercalated functional material and bound together to form a solid product, such as a plank. Applications for this material include decking, fencing, and the like. The functional material is applied prior to forming the solid product, either as a coating on each fiber or inserted in a fiber or fiber cluster. As the constituents, such as fibers, wear during use of the product, the functional material is released to provide continual protection of the product, such as UV resistance and fungal resistance.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Inventors: Parash Kalita, Wenping Jiang