Patents by Inventor Parris Hawkins

Parris Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10140394
    Abstract: Embodiments disclosed herein include methods for reducing or eliminating the impact of tuning disturbances during prediction of lamp failure. In one embodiment, the method comprises monitoring data of a lamp module for a process chamber using one or more physical sensors disposed at different locations within the lamp module, creating virtual sensors based on monitoring data of the lamp module, and providing a prediction model for the lamp module using the virtual sensors as inputs.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 27, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Subrahmanyam Venkata Rama Kommisetti, Haw Jyue Luo, Jimmy Iskandar, Hsincheng Lai, Parris Hawkins
  • Publication number: 20160092618
    Abstract: Embodiments disclosed herein include methods for reducing or eliminating the impact of tuning disturbances during prediction of lamp failure. In one embodiment, the method comprises monitoring data of a lamp module for a process chamber using one or more physical sensors disposed at different locations within the lamp module, creating virtual sensors based on monitoring data of the lamp module, and providing a prediction model for the lamp module using the virtual sensors as inputs.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 31, 2016
    Inventors: Subrahmanyam Venkata Rama KOMMISETTI, Haw Jyue LUO, Jimmy ISKANDAR, Hsincheng LAI, Parris HAWKINS
  • Publication number: 20150331980
    Abstract: A method is provided for determining two or more context types having an associated fault to be modeled by the same multivariate model. The method includes selecting a fault and selecting two or more context types associated with the fault. The method further includes accessing data stored for the selected context types. The method further includes generating rankings of process data tags for each selected context type. Each ranking includes process data tags ranked according to relative contributions of each process data tag in the ranking to the fault. The method further includes classifying the context types into one or more classes based on the process data tags included in each ranking. The one or more classes include a first class of the context types. The method further includes deploying a multivariate model operable to monitor processing equipment for the selected fault for the first class of context types.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 19, 2015
    Inventors: Jimmy ISKANDAR, Bradley D. SCHULZE, Parris HAWKINS
  • Patent number: 8225496
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Robert Z. Bachrach, Yong-Kee Chae, Soo Young Choi, Nicholas G. J. De Vries, Yacov Elgar, Eric A. Englhardt, Michel R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J. B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090077805
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. BACHRACH, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michael R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090077804
    Abstract: The present invention generally relates to a sectioning module positioned within an automated solar cell device fabrication system. The solar cell device fabrication system is adapted to receive a single large substrate and form multiple silicon thin film solar cell devices from the single large substrate.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. Bachrach, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michel R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20070112928
    Abstract: A system, method and medium of sending messages in a distributed data processing network is described, and contemplates receiving a message that includes subject information that is generated based on one or more pre-selected portions as the message is generated. A message delivery system in a client-server environment is also described. The message delivery system includes a server configured to receive a message that includes subject information that is generated based on one or more pre-selected portions as the message is created and configured to forward the message based on the subject information.
    Type: Application
    Filed: January 11, 2007
    Publication date: May 17, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Yueh-shian Chi, Parris Hawkins, Charles Huang
  • Patent number: 7174230
    Abstract: The present invention provides a novel distributed factory system framework including a novel factory automation lifecycle (200) having lifecycle activities for SW developing and integrating (210), installing and administrating (220), factory modeling (230), manufacturing planning (240), manufacturing controlling, monitoring and tracking (250) and analyzing of manufacturing results (260). The factory lifecycle comprises framework components. The distributed factory system framework also includes application components and building blocks. The framework components are adapted to for managing the application components, while the application components are utilized to provide instructions for managing a process such as a wafer fab. The building blocks are adapted for forming or modifying framework and application components. The distributed factory system framework provides computer implemented methods for integrating processing systems and facilitates process and equipment changes.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 6, 2007
    Assignee: Applied Materials, Inc.
    Inventors: John F. Arackaparambil, Tom Chi, Billy Chow, Patrick M. D'Souza, Parris Hawkins, Charles Huang, Jett Jensen, Badri N. Krishnamurthy, Pradeep M. Kulkarni, Prakash M. Kulkarni, Wen Fong Lin, Shantha Mohan, Bishnu Nandy, Huey-Shin Yuan
  • Patent number: 7069101
    Abstract: The present invention provides a novel distributed factory system framework including a novel factory automation lifecycle (200) having lifecycle activities for SW developing and integrating (210), installing and administrating (220), factory modeling (230), manufacturing planning (240), manufacturing controlling, monitoring and tracking (250) and analyzing of manufacturing results (260). The factory lifecycle comprises framework components. The distributed factory system framework also includes application components and software building blocks. The framework components are adapted for managing the application components, while the application components are utilized to provide instructions for managing a process such as a wafer fab. The building blocks are adapted for forming or modifying framework and application components. The distributed factory system framework provides computer implemented methods for integrating processing systems and facilitates process and equipment changes.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: June 27, 2006
    Assignee: Applied Materials, Inc.
    Inventors: John F. Arackaparambil, Tom Chi, Billy Chow, Patrick M. D'Souza, Parris Hawkins, Charles Huang, Jett Jensen, Badri N. Krishnamurthy, Pradeep M. Kulkarni, Prakash M. Kulkarni, Wen Fong Lin, Shantha Mohan, Bishnu Nandy, Huey-Shin Yuan
  • Publication number: 20020156548
    Abstract: The present invention provides a novel distributed factory system framework including a novel factory automation lifecycle (200) having lifecycle activities for SW developing and integrating (210), installing and administrating (220), factory modeling (230), manufacturing planning (240), manufacturing controlling, monitoring and tracking (250) and analyzing of manufacturing results (260). The factory lifecycle comprises framework components. The distributed factory system framework also includes application components and building blocks. The framework components are adapted to for managing the application components, while the application components are utilized to provide instructions for managing a process such as a wafer fab. The building blocks are adapted for forming or modifying framework and application components. The distributed factory system framework provides computer implemented methods for integrating processing systems and facilitates process and equipment changes.
    Type: Application
    Filed: February 28, 2002
    Publication date: October 24, 2002
    Applicant: Applied Materials, Inc.
    Inventors: John F. Arackaparambil, Tom Chi, Billy Chow, Patrick M. D'Souza, Parris Hawkins, Charles Huang, Jett Jensen, Badri N. Krishnamurthy, Pradeep M. Kulkarni, Prakash M. Kulkarni, Wen Fong Lin, Shantha Mohan, Bishnu Nandy, Huey-Shin Yuan