Patents by Inventor Parshant Kumar

Parshant Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11385400
    Abstract: The material stack of the present disclosure can be used for fabricating optical waveguides that are thin and flexible, and that can bend light around small turns. The stack of materials can include a polymer core and a cladding, which together can create a large difference in refractive index. As a result, light can remain within the core even when bent around radii where standard glass fibers could fail.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 12, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jesse J. Wheeler, Joseph J. Register, Parshant Kumar, Carlos A. Segura, Charles A. Lissandrello, John J. LeBlanc
  • Patent number: 10791779
    Abstract: A mold for casting a micro-scale structure includes an upper surface including a first cavity having a first depth. A negative pattern for an array of micro-scale structures is defined in a surface of the first cavity. The mold includes at least one second cavity having a second depth defined in the cavity outside of the negative pattern for the array of micro-scale structures. The at least one second cavity defines a negative pattern for a standoff of the micro-scale structure. A fabric retaining frame is disposed in the first cavity.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 6, 2020
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: David J. Carter, Tirunelveli S. Sriram, Parshant Kumar, Clayton Morris, William W. McFarland, Eugene H. Cook, John LeBlanc, Alla Gimbel
  • Publication number: 20190381503
    Abstract: The present disclosure describes a systems and methods to rapidly detect a level of a drug present in a fluid sample. The systems and methods can be used to monitor drug levels in the blood of a patient to whom the drug has been prescribed. A system can include one or more organic electrochemical transistors that are functionalized with a coating that may include aptamers or antibodies. The coating can bind or otherwise interact with the drug of interest to change the transconductance of the organic electrochemical transistors. The system can detect a change in the transconductance of the organic electrochemical transistors and signal the presence of the drug.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Hongmei Zhang, Melissa Sprachman, Parshant Kumar, Parker Dow, Heena Mutha
  • Publication number: 20180264687
    Abstract: A method of forming a metal mold for casting a micro-scale dry adhesive structure includes securing a master patch of material including a micro-scale dry adhesive structure on a plating fixture, electroforming the metal mold on the patch of material, and removing the metal mold from the plating fixture and patch of material.
    Type: Application
    Filed: December 9, 2015
    Publication date: September 20, 2018
    Inventors: David J. Carter, Tirunelveli S. Sriram, Parshant Kumar, Clayton Morris, William W. McFarland, Eugene H. Cook, John LeBlanc, Alla Epshteyn, W. Dennis Slafer, B. Diane Martin
  • Publication number: 20180133506
    Abstract: This disclosure provides a device that can include a first compliant optrode. The first compliant optrode can include a stack of flexible waveguide materials providing a first optical interface and configured to be introduced into a tissue sample. The stack of flexible waveguide materials can have a thickness of less than about 100 microns. The first compliant optrode can be substantially linear and can be configured to bend at a turn radius of less than about 300 microns.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 17, 2018
    Inventors: Jesse J. Wheeler, Joseph J. Register, Parshant Kumar, Carlos A. Segura, Charles A. Lissandrello, John J. LeBlanc
  • Publication number: 20180136389
    Abstract: The material stack of the present disclosure can be used for fabricating optical waveguides that are thin and flexible, and that can bend light around small turns. The stack of materials can include a polymer core and a cladding, which together can create a large difference in refractive index. As a result, light can remain within the core even when bent around radii where standard glass fibers could fail.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 17, 2018
    Inventors: Jesse J. Wheeler, Joseph J. Register, Parshant Kumar, Carlos A. Segura, Charles A. Lissandrello, John J. LeBlanc
  • Publication number: 20170367418
    Abstract: A mold for casting a micro-scale structure includes an upper surface including a first cavity having a first depth. A negative pattern for an array of micro-scale structures is defined in a surface of the first cavity. The mold includes at least one second cavity having a second depth defined in the cavity outside of the negative pattern for the array of micro-scale structures. The at least one second cavity defines a negative pattern for a standoff of the micro-scale structure. A fabric retaining frame is disposed in the first cavity.
    Type: Application
    Filed: December 9, 2015
    Publication date: December 28, 2017
    Inventors: David J. Carter, Tirunelveli S. Sriram, Parshant Kumar, Clayton Morris, William W. McFarland, Eugene H. Cook, John LeBlanc, Alla Gimbel
  • Publication number: 20170361508
    Abstract: A mold for casting a micro-scale dry adhesive structure includes an upper surface including a first cavity having a first depth, a negative pattern for an array of micro-scale structures defined in a surface of the first cavity, and at least one second cavity having a second depth defined in the cavity outside of the negative pattern for the array of micro-scale structures, the at least one second cavity defining a negative pattern for a standoff of the micro-scale dry adhesive structure.
    Type: Application
    Filed: December 9, 2015
    Publication date: December 21, 2017
    Inventors: David J. Carter, Tirunelveli S. Sriram, Parshant Kumar, Clayton Morris, William W. McFarland, Eugene H. Cook, John LeBlanc, Alla Gimbel