Patents by Inventor Pascal Castro
Pascal Castro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20140018506Abstract: A solid, particulate catalyst comprising: (i) a complex of formula (I) wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; each R18 is a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-hydrocarbyl radical; each W is a 5 or 6 membered aryl or heteroaryl ring wherein each atom of said ring is optionally substituted with at least one R5 group; each R5 is the same or different and is a C1-C20 hydrocarbyl rType: ApplicationFiled: December 20, 2011Publication date: January 16, 2014Applicant: BOREALIS AGInventors: Luigi Resconi, Pascal Castro, Alexander Z. Voskoboynikov, Vyatcheslav V. Izmer, Dmitry S. Kononovich
-
Publication number: 20130289229Abstract: A complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; n is 0-3; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-hydrocarbyl radical; each W is a 5 or 6 membered aryl or heteroaryl ring wherein each atom of said ring is optionally substituted with an R5 group each R5 is the same or different and is a C1-C20 hydrocarbyl radical optionType: ApplicationFiled: June 29, 2011Publication date: October 31, 2013Applicant: BOREALIS AGInventors: Pascal Castro, Luigi Resconi, Lauri Huhtanen
-
Publication number: 20130217845Abstract: A process for the preparation of a random propylene copolymer comprising polymerising propylene and at least one C2-10 alpha olefin (especially ethylene) in the presence of a catalyst; wherein said catalyst comprises: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; n is 0-3; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-hType: ApplicationFiled: June 29, 2011Publication date: August 22, 2013Applicant: BOREALIS AGInventors: Pascal Castro, Luigi Resconi, Lauri Huhtanen
-
Publication number: 20130131291Abstract: A polypropylene homopolymer with a melting point of less than 147° C., a percentage of 2.1 errors of at least 1% and a xylene soluble fraction of less than 0.5 wt %.Type: ApplicationFiled: April 27, 2011Publication date: May 23, 2013Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen, Norbert Hafner
-
Publication number: 20130116394Abstract: Solid, particulate catalysts comprising bridged his indenyl n-ligands are disclosed, together with methods for the preparation and use thereat for example, in olefin polymerization.Type: ApplicationFiled: April 27, 2011Publication date: May 9, 2013Applicant: Borealis AGInventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
-
Publication number: 20130018156Abstract: A solid particulate catalyst free from an external carrier comprising: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR'2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-alkyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 independently is hydrogen or a linear or branched C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms from groups 14-16 of the Periodic Table of the Elements; each R2 and R3 taken together form a 4-7 membered ring condensed to the benzene ring of the indenyl moiety, said ring optionally containing heteroatoms from groups 14-16, each atom forming said ring being optionally substituted with at least one R18 radical; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1Type: ApplicationFiled: December 21, 2010Publication date: January 17, 2013Applicant: BOREALIS AGInventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
-
Publication number: 20120277384Abstract: Process for the preparation of a polypropylene, wherein propylene is polymerised optionally with a comonomer selected from the group consisting of ethylene, a C4-C20 ?-olefin and mixtures thereof, in the presence of a catalyst system comprising solid catalyst particles, wherein the solid catalyst particles (a) comprise a transition metal compound of formula (I) LmRnMXq (I) wherein “M” is a transition metal of anyone of the groups 3 to 10 of the periodic table (IUPAC), each “X” is independently a monovalent anionic ?-ligand, each “L” is independently an organic ligand which coordinates to the transition metal (M), each “R” is a bridging group linking two organic ligands (L), “m” is 2 or 3, preferably 2, “n” is 0, 1 or 2, preferably 1, “q” is 1, 2 or 3, preferably 2, m+q is equal to the valency of the transition metal (M), (c) comprise a cocatalyst (Co) comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of Al, wherein further the loss of activType: ApplicationFiled: June 16, 2010Publication date: November 1, 2012Applicant: Borealis AGInventors: Lauri Huhtanen, Kalle Kallio, Pascal Castro
-
Publication number: 20100253325Abstract: The invention relates to a motor vehicle gearbox position detector comprising a sensor (3) designed to cooperate with a moving target (5) connected to a gearbox ratio actuation element so as to provide at least one analogue signal representative of the position of the neutral point of the gearbox, characterized in that it additionally comprises a unit for processing the signal (9) comprising an analogue-to-digital converter designed to convert the analogue signal into a digital output signal (17) so as to provide periodic predefined information corresponding to the position of the neutral point only when, on the one hand, the target (5) is in the neutral point position and, on the other hand, when the sensor (1) is in the normal operating state.Type: ApplicationFiled: June 12, 2008Publication date: October 7, 2010Applicant: SC2NInventors: Pascal Castro, Vincent Guibet
-
Publication number: 20080218746Abstract: The invention concerns a method for detecting gas bubbles in a liquid adapted to a device comprising a light source, a light detector and a data controlling and processing unit connected to a client system comprising the following steps: emitting light from the light source, acquiring successive measurements of the light intensity sensed by the light detector and calculating a variation between two successive measurements of said light intensity. In accordance with a first embodiment of the invention, the method further comprises a step which consists in comparing the variation between two successive measurements of light intensity to a threshold S. Advantageously, a warning counter is incremented by a value A when variation between two successive measurements is higher than the threshold S and decremented by a value B in the opposite case. A proportion of bubbles higher than a maximum authorized rate is detected when said warning counter exceeds a warning value C.Type: ApplicationFiled: April 18, 2008Publication date: September 11, 2008Applicant: SC2NInventor: Pascal Castro
-
Patent number: 7372063Abstract: The invention concerns a method for detecting gas bubbles in a liquid adapted to a device comprising a light source, a light detector and a data controlling and processing unit connected to a client system comprising the following steps: emitting light from the light source, acquiring successive measurements of the light intensity sensed by the light detector and calculating a variation between two successive measurements of said light intensity. In accordance with a first embodiment of the invention, the method further comprises a step which consists in comparing the variation between two successive measurements of light intensity to a threshold S. Advantageously, a warning counter is incremented by a value A when variation between two successive measurements is higher than the threshold S and decremented by a value B in the opposite case. A proportion of bubbles higher than a maximum authorized rate is detected when said warning counter exceeds a warning value C.Type: GrantFiled: November 25, 2003Date of Patent: May 13, 2008Assignee: SC2N Societe AnonymeInventor: Pascal Castro
-
Publication number: 20060061763Abstract: The invention concerns a method for detecting gas bubbles in a liquid adapted to a device comprising a light source, a light detector and a data controlling and processing unit connected to a client system comprising the following steps: emitting light from the light source, acquiring successive measurements of the light intensity sensed by the light detector and calculating a variation between two successive measurements of said light intensity. In accordance with a first embodiment of the invention, the method further comprises a step which consists in comparing the variation between two successive measurements of light intensity to a threshold S. Advantageously, a warning counter is incremented by a value A when variation between two successive measurements is higher than the threshold S and decremented by a value B in the opposite case. A proportion of bubbles higher than a maximum authorized rate is detected when said warning counter exceeds a warning value C.Type: ApplicationFiled: November 25, 2003Publication date: March 23, 2006Applicant: SC2N Societe AnonymeInventor: Pascal Castro