Patents by Inventor Pascal Hartmann

Pascal Hartmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420652
    Abstract: Disclosed herein is a process for making an electrode active material, where said process includes the following steps: (a) providing an (oxy)hydroxide or oxide of TM, where TM is a combination of metals, and where TM contains Ni and at least one of Mn and Co; (b) treating said oxide or (oxy)hydroxide from step (a) with a non-aqueous or aqueous solution of a compound of M2, where M2 is selected from the group consisting of Ti, Zr, Nb, and Ta; (c) removing the solvent(s), thereby obtaining a solid residue; (d) mixing the solid residue from step (c) with a source of lithium and, optionally, at least one compound of Ti or Al or Zr; and (e) treating the mixture obtained from step (d) thermally at a temperature in the range of from 550 to 900° C.
    Type: Application
    Filed: November 29, 2021
    Publication date: December 28, 2023
    Inventors: Benjamin Johannes Herbert BERGNER, Pascal HARTMANN
  • Publication number: 20230223529
    Abstract: The present invention is directed towards a process for making an electrode wherein the process comprises the following steps (a) providing a particulate lithiated transition metal oxide according to the formula Li1+xTM1-xO2 wherein x is in the range of from zero to 0.1 and TM contains nickel and at least one of Co, Mn and Al, (b) mixing the lithiated transition metal oxide from step (a) with carbon in electrically conductive form, (c) exposing the mixture obtained in step (b) to a pressure in the range of from 100 to 500 MPa over a period of time of from one second to one minute, thereby causing cracks in at least some of the particles of the electrode active material, (d) mixing the mixture from step (c) with a binder polymer and, optionally, with further carbon in electrically conductive form and with a solvent, (e) applying the mixture from step (d) to a metal foil.
    Type: Application
    Filed: June 7, 2021
    Publication date: July 13, 2023
    Inventors: Yohko TOMOTA, Christoph ERK, Pascal HARTMANN
  • Publication number: 20230219827
    Abstract: Process for making a particulate lithiated transition metal oxide comprising the steps of: (a) Providing a particulate transition metal precursor comprising Ni, (b) mixing said precursor with at least one compound of lithium and at least one processing additive selected from NaCl, KCl, CuCl2, B2O3, MoO3, Bi2O3, Na2SO4, and K2SO4 in an amount of from 0.1 to 5% by weight, referring to the entire mixture obtained in step (b), (c) thermally treating the mixture obtained according to step (b) in at least two steps, (c1) at 300 to 500° C. under an atmosphere that may comprise oxygen, (c2) at 650 to 850° C. under an atmosphere of oxygen.
    Type: Application
    Filed: April 28, 2021
    Publication date: July 13, 2023
    Inventors: Matteo BIANCHINI, Pascal HARTMANN, Torsten BREZESINSKI, Simon SCHWEIDLER
  • Publication number: 20230130367
    Abstract: Process for making a lithiated oxide, said process comprising the following steps: (a) making a particulate hydroxide, oxide or oxyhydroxide of nickel, and, optionally, at least one of Co and Mn and, by combining an aqueous solution of sodium or potassium hydrox-ide with an aqueous solution containing a water-soluble salt of nickel and, optionally, a water-soluble salt of Co, Mn, Al, Ti, Zr, W, Mo, Ga, Nb, Ta, or Mg, (b) adding a source of lithium, (c) treating the mixture obtained from step (b) thermally at at least two different temperatures: (c1) at 300 to 500° C. under an atmosphere that may comprise oxygen, (c2) at 500 to 600° C. under an atmosphere of oxygen, wherein the temperature in step (c2) is set to be higher than in step (c1).
    Type: Application
    Filed: April 1, 2021
    Publication date: April 27, 2023
    Inventors: Matteo BIANCHINI, Pascal HARTMANN, Torsten BREZESINSKI
  • Publication number: 20230002242
    Abstract: Process for making an electrode active material wherein said process comprises the following steps: (a) Providing a hydroxide TM(OH)2 or at least one oxide TMO or oxyhydroxide of TM or combination of at least two of the foregoing wherein TM contains at least 99 mol-% Ni and, optionally, in total up to 1 mol-% of at least one metal selected from Ti, Zr, V, Co, Zn, Ba, or Mg, (b) mixing said hydroxide TM(OH)2 or oxide TMO or oxyhydroxide of TM or combination with a source of lithium and an aqueous solution of a compound of Me wherein Me is selected from Al or Ga or a combination of the foregoing and wherein the molar amount of TM corresponds to the sum of Li and Me, (c) removing the water by evaporation, (d) treating the solid residue obtained from step (c) thermally at a temperature in the range of from 500 to 800° C. in the presence of oxygen.
    Type: Application
    Filed: February 18, 2021
    Publication date: January 5, 2023
    Inventors: Matteo BIANCHINI, Pascal HARTMANN, Torsten BREZESINSKI, David KITSCHE, Jurgen JANEK
  • Publication number: 20220255188
    Abstract: Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
    Type: Application
    Filed: December 22, 2021
    Publication date: August 11, 2022
    Applicants: Sion Power Corporation, BASF SE
    Inventors: Holger Schneider, Hui Du, Klaus Leitner, Johan Ter Maat, Pascal Hartmann, Joern Kulisch, Marina Safont-Sempere, Tracy Earl Kelley, Chariclea Scordilis-Kelley
  • Publication number: 20220246977
    Abstract: Described is a coated particulate material for use as electrode active material in an electrode and/or in a solid-state lithium-ion electrochemical cell and/or in an all solid-state lithium-ion electrochemical cell, comprising a plurality of core particles, each core particle comprising at least one nickel-containing complex layered oxide, and disposed on the surfaces of the core particles, a coating comprising carbonate ions, lithium and at least one further element. Further described is an electrode for use in a solid-state or all solid-state lithium-ion electrochemical cell and a respective electrochemical cell, each of them comprising said coated particulate material. Also described herein are methods of making the coated particulate material and the electrode, as well as respective uses of the coated particulate material.
    Type: Application
    Filed: June 11, 2020
    Publication date: August 4, 2022
    Inventors: Torsten Brezesinski, Joern Kulisch, Pascal Hartmann, A-Young Kim, Florian Strauss
  • Publication number: 20220212950
    Abstract: Particulate material of the composition Li1+xTM1?xO2 wherein x is in the range of from ?0.02 to +0.05, TM comprises at least 93 mol-% nickel and (A) at least one element M1 wherein M1 is selected from Nb, Ta, Ti, Zr, W and Mo, (B) at least one element M2 wherein M2 is selected from B, Al, Mg and Ga, wherein said particulate material has an average particle diameter (D50) in the range of from 2 to 20 ?m.
    Type: Application
    Filed: June 17, 2020
    Publication date: July 7, 2022
    Inventors: Benjamin Johannes Herbert BERGNER, Heino SOMMER, Pascal HARTMANN, Tobias Maximilian TEUFL
  • Publication number: 20220098053
    Abstract: Process for making an electrode active material according to general formula Li1+xTM1?xO2, wherein TM is a combination of Ni and Co and Zr and at least one metal selected from Mn and Al, and, optionally, at least one of Mg, Ti, and W, wherein GC at least 60 mole-% is Ni, referring to the sum of Ni, Co and, if applicable, Mn and Al, and x is in the range of from zero to 0.2, said process comprising the following steps: (a) mixing (A) a mixed oxide or oxyhydroxide of Ni, Co and, if applicable, Mn, (B) at least one lithium compound selected from lithium hydroxide, lithium oxide and lithium carbonate, and (C) at least one oxide or hydroxide or oxyhydroxide of Zr with an average diameter D50 in the range of from 1 to 7 ?m, and in compounds (C) that are selected from oxides of Zr, their crystallite size is in the range of from 5 to 20 nm and (b) Subjecting said mixture to heat treatment at a temperature in the range of from 700 to 1000° C.
    Type: Application
    Filed: January 6, 2020
    Publication date: March 31, 2022
    Applicant: BASF SE
    Inventors: Christoph ERK, Pascal HARTMANN, Robert Matthew LEE, James A. SIOSS
  • Patent number: 11283074
    Abstract: The present invention is related to an electrode active material for a lithium-ion battery of general formula (I): Li1+x(NiaCobMncMd)1?xO2 wherein x is in the range of from zero to 0.1, a is in the range of from 0.1 to 0.5, b is in the range of from 0.4 to 0.9, c is in the range of from zero to 0.3, d is in the range of from zero to 0.1, M is selected from Al, B, Mg, W, Mo, Ti, Si and Zr, with a+b+c+d=1 and a>c. In addition, the present invention is related to a method of manufacture of electrode active materials and to their use.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 22, 2022
    Assignees: BASF SE, Karlsruher Institut für Technologie
    Inventors: Pascal Hartmann, Thomas Michael Ryll, Christoph Erk, Lea De Biasi
  • Patent number: 11251501
    Abstract: Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: February 15, 2022
    Assignees: Sion Power Corporation, BASF SE
    Inventors: Holger Schneider, Hui Du, Klaus Leitner, Johan ter Maat, Pascal Hartmann, Joern Kulisch, Marina Safont-Sempere, Tracy Earl Kelley, Chariclea Scordilis-Kelley
  • Publication number: 20210347655
    Abstract: The present disclosure relates to a process for making a coated oxide material comprising: (a) providing a particulate material chosen from lithiated nickel-cobalt aluminum oxides and lithiated layered nickel-cobalt-manganese oxides wherein a nickel content ranges from 10 mole-% to 95 mole-% nickel, by total metal content in the particulate material, (b) optionally, treating the particulate material with an aqueous medium, followed by removing the aqueous medium, (c) treating the particulate material from step (a) or (b) with a metal amide or alkyl metal compound dissolved or slurried in an organic solvent, and (d) removing the organic solvent employed in step (c).
    Type: Application
    Filed: September 16, 2019
    Publication date: November 11, 2021
    Inventors: Pascal Hartmann, Heino Sommer, Hannes Wolf, Florian Strauss, Sven Neudeck, Torsten Brezesinski
  • Publication number: 20210323824
    Abstract: Described are a solid material which has ionic conductivity for lithium ions, a process for preparing said solid material, a use of said solid material as a solid electrolyte for an electrochemical cell, a solid structure selected from the group consisting of a cathode, an anode and a separator for an electrochemical cell, and an electrochemical cell comprising such solid structure.
    Type: Application
    Filed: August 20, 2019
    Publication date: October 21, 2021
    Inventors: Linda Nazar, Torben Adermann, Joern Kulisch, Pascal Hartmann, Laidong Zhou
  • Publication number: 20200303735
    Abstract: The present invention is related to an electrode active material for a lithium-ion battery of general formula (I): Li1+x(NiaCobMncMd)1?xO2 wherein x is in the range of from zero to 0.1, a is in the range of from 0.1 to 0.5, b is in the range of from 0.4 to 0.9, c is in the range of from zero to 0.3, d is in the range of from zero to 0.1, M is selected from Al, B, Mg, W, Mo, Ti, Si and Zr, with a+b+c+d=1 and a>c. In addition, the present invention is related to a method of manufacture of electrode active materials and to their use.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 24, 2020
    Applicants: BASF SE, Karlsruher Institut fuer Technologie
    Inventors: Pascal HARTMANN, Thomas Michael RYLL, Christopher ERK, Lea DE BIASI
  • Publication number: 20190181498
    Abstract: Described herein is a process for preparing a thin film including a solid electrolyte, which includes lithium and sulfur.
    Type: Application
    Filed: June 7, 2017
    Publication date: June 13, 2019
    Inventors: Michael Baecker, Daniel Waldmann, Joern Kulisch, Johan ter Maat, Pascal Hartmann, Mariusz Mosiadz, Annika Baumann, Lukas Ewald
  • Publication number: 20180351148
    Abstract: Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 6, 2018
    Applicants: Sion Power Corporation, BASF SE
    Inventors: Holger Schneider, Hui Du, Klaus Leitner, Johan ter Maat, Pascal Hartmann, Joern Kulisch, Marina Safont-Sempere, Tracy Earl Kelley, Chariclea Scordilis-Kelley
  • Patent number: 9379421
    Abstract: The present invention relates to sodium oxygen cells comprising (A) at least one anode comprising sodium, (B) at least one gas diffusion electrode comprising at least one porous support, and (C) a liquid electrolyte comprising at least one aprotic glycol diether with a molecular weight Mn of not more than 350 g/mol. The present invention further relates to the use of the invention sodium oxygen cells and to a process for preparing sodium supperoxide of formula NaO2.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: June 28, 2016
    Assignee: BASF SE
    Inventors: Arnd Garsuch, Anna Katharina Duerr, Juergen Janek, Philipp Adelhelm, Pascal Hartmann
  • Publication number: 20150099196
    Abstract: The present invention relates to sodium oxygen cells comprising (A) at least one anode comprising sodium, (B) at least one gas diffusion electrode comprising at least one porous support, and (C) a liquid electrolyte comprising at least one aprotic glycol diether with a molecular weight Mn of not more than 350 g/mol. The present invention further relates to the use of the invention sodium oxygen cells and to a process for preparing sodium supperoxide of formula NaO2.
    Type: Application
    Filed: March 20, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Arnd Garsuch, Anna Katharina Duerr, Juergen Janek, Philipp Adelhelm, Pascal Hartmann