Patents by Inventor Pascal Hesse

Pascal Hesse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604611
    Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads of an aqueous solution comprising water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, recovering polymer beads, and then cleaning the non-aqueous liquid in which the process comprises providing the non-aqueous liquid in a vessel (1), forming a suspension of monomer beads from the aqueous monomer or monomer blend in the non-aqueous liquid, initiating polymerisation to form polymerising beads, removing a suspension of the polymer beads in non-aqueous liquid from the vessel and recovering, water soluble or water swellable polymer beads from the suspension, in which the non-aqueous liquid contains impurities which comprise particles, and then transferring the non-aqueous liquid from the suspension to a cleaning stage, in which the cleaning stage provides a cleaned non
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 31, 2020
    Assignee: BASF SE
    Inventors: John Scott Barratt, Aleksandra Jelicic, Pascal Hesse, Oliver Soetje, Robert Haschick, Gabriela Eugenia Fonseca Zepeda, Shankara Narayanan Keelapandal Ramamoorthy, Sandra Jeck, Jelan Kuhn
  • Patent number: 10370461
    Abstract: A reverse-phase suspension polymerization process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerizing the monomer or monomer blend, to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point initiating polymerization of the aqueous monomer beads to form polymerizing beads, wherein the polymerizing beads form polymer beads when they reach the polymer bead discharge point, removing a suspensi
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: August 6, 2019
    Assignee: BASF SE
    Inventors: Pascal Hesse, Aleksandra Jelicic, Gabriela Eugenia Fonseca Zepeda, Robert Haschick, Shankara Narayanan Keelapandal Ramamoorthy, Gareth Ian Naylor, John Scott Barratt, Oliver Soetje, Marcel Lievre, Florian Rainau, Mark Lebkuecher
  • Patent number: 9765167
    Abstract: A reverse-phase suspension polymerization process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerizing the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises, providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point subjecting the aqueous monomer beads to polymerization conditions to initiate polymerization to form polymerizing beads, wherein the polymerizing beads have formed polymer beads when they reach the poly
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: September 19, 2017
    Assignee: BASF SE
    Inventors: Robert Haschick, Aleksandra Jelicic, John Scott Barratt, Pascal Hesse, Oliver Soetje, Gabriela Eugenia Fonseca Zepeda, Shankara Narayanan Keelapandal Ramamoorthy, Bjoern Langlotz
  • Publication number: 20160159939
    Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend, to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point initiating polymerisation of the aqueous monomer beads to form polymerising beads, wherein the polymerising beads form polymer beads when they reach the polymer bead discharge point, removing a suspensi
    Type: Application
    Filed: July 29, 2014
    Publication date: June 9, 2016
    Applicant: BASF SE
    Inventors: Pascal HESSE, Aleksandra JELICIC, Gabriela Eugenia FONSECA ZEPEDA, Robert HASCHICK, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Gareth Ian NAYLOR, John Scott BARRATT, Oliver SOETJE, Marcel LIEVRE, Florian RAINAU, Mark LEBKUECHER
  • Publication number: 20160159955
    Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises, providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point subjecting the aqueous monomer beads to polymerisation conditions to initiate polymerisation to form polymerising beads, wherein the polymerising beads have formed polymer beads when they reach the poly
    Type: Application
    Filed: July 29, 2014
    Publication date: June 9, 2016
    Applicant: BASF SE
    Inventors: Robert HASCHICK, Aleksandra JELICIC, John Scott BARRATT, Pascal HESSE, Oliver SOETJE, Gabriela Eugenia FONSECA ZEPEDA, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Bjoern LANGLOTZ
  • Publication number: 20160159958
    Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads of an aqueous solution comprising water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, recovering polymer beads, and then cleaning the non-aqueous liquid in which the process comprises providing the non-aqueous liquid in a vessel (1), forming a suspension of monomer beads from the aqueous monomer or monomer blend in the non-aqueous liquid, initiating polymerisation to form polymerising beads, removing a suspension of the polymer beads in non-aqueous liquid from the vessel and recovering, water soluble or water swellable polymer beads from the suspension, in which the non-aqueous liquid contains impurities which comprise particles, and then transferring the non-aqueous liquid from the suspension to a cleaning stage, in which the cleaning stage provides a cleaned non
    Type: Application
    Filed: July 29, 2014
    Publication date: June 9, 2016
    Applicant: BASF SE
    Inventors: John Scott BARRATT, Aleksandra JELICIC, Pascal HESSE, Oliver SOETJE, Robert HASCHICK, Gabriela Eugenia FONSECA ZEPEDA, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Sandra JECK, Jelan KUHN
  • Publication number: 20160102197
    Abstract: The invention relates to thermoplastic molding compounds which contain impact-modified styrene/nitrile monomer copolymers, to molded products and films produced therefrom and to the use thereof. The impact modifiers used are linear A-B-A tri-block copolymers from hard polymer blocks A and a soft polymer block B, preferably polymethylmethacrylate-block-polybutylacrylate-block-polymethylmethacrylate.
    Type: Application
    Filed: May 12, 2014
    Publication date: April 14, 2016
    Inventors: Philipp BOECKMANN, Sven FLEISCHMANN, Matthias MUELLER, Pascal HESSE, Jordan KOPPING
  • Patent number: 9249290
    Abstract: The invention relates to a thermoplastic molding compound containing: a) 50 to 85 parts of one or more terpolymers based on acrylnitril, alpha-methylstyrene, and styrene as component A, said terpolymers consisting of: 5 to 30 wt. % styrene, 15 to 35 wt. % acrylnitril, 50 to 70 wt. % alpha-methylstyrene, and 0 to 5 wt. % additional copolymerizable monomers, b) 15 to 50 parts of one or more impact-modifying graft rubbers with an olefinic double bond in the rubber phase as component B, c) 0 to 45 parts of one or more copolymers based on styrene and acrylnitril as component C, said copolymers consisting of: 71 to 81 wt. % styrene, 29 to 19 wt. % acrylnitril, and 0 to 5 wt. % additional copolymerizable monomers, and optionally additives and fibrous and/or particulate fillers. The thermoplastic molding compound leads to a reduced yellowing of the produced molded body.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 2, 2016
    Assignee: STYROLUTION EUROPE GMBH
    Inventors: Peter Ittemann, Rolf Minkwitz, Pascal Hesse, Bernd Niedermaier
  • Publication number: 20150322182
    Abstract: Styrene beads, wherein the styrene polymer beads comprise from 0.5 to 5% by weight of one or more high-temperature peroxides, where the high-temperature peroxides have a half-life time of 1 hour in the range from 110 to 160° C., measured in cumene.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 12, 2015
    Inventors: Patrick Spies, Pascal Hesse, Bernhard Schmied, Libor Seda, Rainer Ostermann, Frank Braun, Gregor Haverkemper, Uwe-Johannes Lehnen, Klaus Hahn, Jan Holoch
  • Publication number: 20150011692
    Abstract: The invention relates to a thermoplastic molding compound containing: a) 50 to 85 parts of one or more terpolymers based on acrylnitril, alpha-methylstyrene, and styrene as component A, said terpolymers consisting of: 5 to 30 wt. % styrene, 15 to 35 wt. % acrylnitril, 50 to 70 wt. % alpha-methylstyrene, and 0 to 5 wt. % additional copolymerizable monomers, b) 15 to 50 parts of one or more impact-modifying graft rubbers with an olefinic double bond in the rubber phase as component B, c) 0 to 45 parts of one or more copolymers based on styrene and acrylnitril as component C, said copolymers consisting of: 71 to 81 wt. % styrene, 29 to 19 wt. % acrylnitril, and 0 to 5 wt. % additional copolymerizable monomers, and optionally additives and fibrous and/or particulate fillers. The thermoplastic molding compound leads to a reduced yellowing of the produced molded body.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 8, 2015
    Inventors: Peter Ittemann, Rolf Minkwitz, Pascal Hesse, Bernd Niedermaier
  • Publication number: 20150005402
    Abstract: a) Production of prepolymer beads through a first suspension polymerization reaction using an aqueous suspension comprising styrene monomers and comprising particulate additives, b) isolation of the prepolymer beads, c) optional division of the prepolymer beads into fractions of different particle size and selection of one or more fractions for subsequent stages, d) production of an aqueous suspension of the prepolymer beads and conduct of a second suspension polymerization reaction in the presence of blowing agent and with addition of further monomers.
    Type: Application
    Filed: December 17, 2012
    Publication date: January 1, 2015
    Inventors: Patrick Spies, Pascal Hesse, Bernhard Schmied, Libor Seda, Rainer Ostermann, Frank Braun, Gregor Haverkemper, Uwe-Johannes Lehnen, Klaus Hahn, Jan Holoch
  • Patent number: 8889748
    Abstract: A composition comprising at least one expandable styrene polymer component and at least one cyclohexanecarboxylic ester and also optionally further components can be processed to mechanically robust foam materials.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 18, 2014
    Assignee: BASF SE
    Inventors: Wolfram Husemann, Uwe-Johannes Lehnen, Patrick Spies, Boris Breitscheidel, Klaus Hahn, Jan Holoch, Olaf Kriha, Bernhard Schmied, Pascal Hesse
  • Patent number: 8455559
    Abstract: The invention provides a process for preparing expandable styrene polymers which comprises the steps of: (a) adding an aqueous phase comprising a suspension stabilizer and an organic phase comprising styrene and an initiator to a reactor, (b) commencing the addition of a blowing agent at a styrene conversion in the range from 40 to 70% and adding the blowing agent over a period ranging from 30 to 60 minutes, (c) adding a stabilizer to stabilize the bead size distribution of the expandable styrene polymer at a styrene conversion in the range from 65 to 99%.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: June 4, 2013
    Assignee: BASF SE
    Inventors: Wolfgang Ferstl, Jun Gao, Klaus Hahn, Pascal Hesse, Jan Holoch, Klaus-Dieter Hungenberg, Wolfram Husemann, Renata Jovanovic, Wolfgang Kasten, Olaf Kriha, Eckhard Neufeld, Michel Pepers, Birgit Reinhard, Bernhard Schmied, Rudolf Süttinger, Ping Zhang
  • Publication number: 20130085242
    Abstract: Process for preparing polymers by controlled free-radical polymerization, wherein the polymerization of one or more free-radically polymerizable monomers of the general formula (I) where R1, R2, R3 are each H, C1-C4-alkyl, R4 is C(?O)0R5, C(?O)NHR15, C(?O)NR5R6, OC(?O)CH3, C(?O)OH, CN, aryl, hetaryl, C(?O)OR5OH, C(?O)OR5Si(OR5)3, halogen, NHC(O)H, P(?O)(OR7)2, R5 is C1-C20-alkyl, R15 is C1-C20-alkyl, R6 is C1-C20-alkyl, R7 is H, C1-C20-alkyl, in the presence of a. one or more catalysts comprising Cu in the form of Cu(0), Cu(I), Cu(II) or mixtures thereof, b. one or more initiators selected from the group consisting of organic halides or pseudohalides, c. one or more ligands, d. optionally one or more solvents, e. optionally one or more inorganic halide salts, and comprises the steps i) addition of the catalyst a., ii) optionally addition of monomers of the general formula (I), iii) optionally addition of solvent d., iv) addition of ligand c., v) addition of initiator b.
    Type: Application
    Filed: August 29, 2012
    Publication date: April 4, 2013
    Applicant: BASF SE
    Inventors: Pascal HESSE, Sven FLEISCHMANN, Florian BECKER, Klaus MUEHLBACH, Klaus-Dieter HUNGENBERG, Markus BRYM, Matthias KLEINER
  • Publication number: 20110291040
    Abstract: A composition comprising at least one expandable styrene polymer component and at least one cyclohexanecarboxylic ester and also optionally further components can be processed to mechanically robust foam materials.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 1, 2011
    Applicant: BASF SE
    Inventors: Wolfram Husemann, Uwe-Johannes Lehnen, Patrick Spies, Boris Breitscheidel, Klaus Hahn, Jan Holoch, Olaf Kriha, Bernhard Schmied, Pascal Hesse
  • Publication number: 20110224316
    Abstract: The invention provides a process for preparing expandable styrene polymers which comprises the steps of: (a) adding an aqueous phase comprising a suspension stabilizer and an organic phase comprising styrene and an initiator to a reactor, (b) commencing the addition of a blowing agent at a styrene conversion in the range from 40 to 70% and adding the blowing agent over a period ranging from 30 to 60 minutes, (c) adding a stabilizer to stabilize the bead size distribution of the expandable styrene polymer at a styrene conversion in the range from 65 to 99%.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: BASF SE
    Inventors: Wolfgang Ferstl, Jun Gao, Klaus Hahn, Pascal Hesse, Jan Holoch, Klaus-Dieter Hungenberg, Wolfram Husemann, Renata Jovanovic, Wolfgang Kasten, Olaf Kriha, Eckhard Neufeld, Michel Pepers, Birgit Reinhard, Bernhard Schmied, Rudolf Süttinger, Ping Zhang