Patents by Inventor Pascal Pierre

Pascal Pierre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180328203
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: Safran Aircraft Engines
    Inventors: Pierre GINIBRE, Pierre Hervé Fernand Marche, Ludovic Pintat, Pascal Pierre Nicolas Routier, Guillaume Jochen Scholl
  • Publication number: 20180328180
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Thomas Michel Julien Mervant, Vincent Nicolas Leonardon, Pierre Hervé Fernand Marche, Pascal Pierre Nicolas Routier, Ludovic Pintat
  • Publication number: 20180328198
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: Safran Aircraft Engines
    Inventors: Maxime Didier DELABRIERE, Daniel Marius MAN, Pascal Pierre Nicolas ROUTIER, Guillaume Jochen SCHOLL, Renaud Gabriel Constant ROYAN
  • Publication number: 20180328179
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: Safran Aircraft Engines
    Inventors: Vincent Nicolas LEONARDON, Pascal Pierre Nicolas Routier, Guillaume Jochen Scholl, Eric Roger Schwartz, Renaud Gabriel Constant Royan
  • Publication number: 20180328200
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: Safran Aircraft Engines
    Inventors: Pascal Pierre Nicolas Routier, Jean-Armand Marc Emilien Destouches, Thomas Michel Julien Mervant, Ludovic Pintat, Guillaume Jochen Scholl
  • Publication number: 20180328201
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: Safran Aircraft Engines
    Inventors: Daniel Marius MAN, Pierre Herve Fernand Marche, Pascal Pierre Nicolas Routier, Guillaume Jochen Scholl, Ludovic Pintat
  • Publication number: 20180230808
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: August 16, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Pascal Pierre ROUTIER, Laurent Patrick COUDERT, Maxime Didier DELABRIERE, Jean-Armand Marc DESTOUCHES
  • Publication number: 20180230809
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X, Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: August 16, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Pascal Pierre ROUTIER, Vincent Nicolas LEONARDON, Daniel Marius MAN, Guillaume Jochen SCHOLL
  • Publication number: 20180016905
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Pierre Hervé MARCHE, Maxime Didier DELABRIERE, Pascal Pierre ROUTIER, Guillaume Jochen SCHOLL
  • Publication number: 20180016908
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Pascal Pierre ROUTIER, Maxime Didier DELABRIERE, Vincent Nicolas LEONARDON, Daniel Marius MAN
  • Publication number: 20180016913
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Pascal Pierre ROUTIER, Vincent Nicolas LEONARDON, Daniel Marius MAN, Pierre Hervé MARCHE
  • Publication number: 20180016904
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Thomas Michel MERVANT, Laurent Patrick COUDERT, Jean-Armand Marc DESTOUCHES, Pascal Pierre ROUTIER
  • Publication number: 20180016903
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Maxime Didier DELABRIERE, Vincent Nicolas Leonardon, Daniel Marius Man, Pascal Pierre Routier
  • Publication number: 20180016940
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: February 22, 2017
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Maxime Didier DELABRIERE, Pascal Pierre ROUTIER, Pierre Hervé MARCHE, Vincent Nicolas LEONARDON
  • Publication number: 20180016909
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Daniel Marius MAN, Maxime Didier DELABRIERE, Pierre Hervé MARCHE, Pascal Pierre ROUTIER
  • Publication number: 20180016910
    Abstract: When cold and in the non-coated state, the aerodynamic profile is substantially identical to a nominal profile determined by the Cartesian coordinates X,Y, Zadim given in Table 1, in which the coordinate Zadim is the quotient D/H where D is the distance of the point under consideration from a first reference plane P0 situated at the base of the nominal profile, and H is the height of said profile measured from the first reference plane to a second reference plane P1. The measurements D and H are taken radially relative to the axis of the turbine, while the X coordinate is measured in the axial direction of the turbine.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 18, 2018
    Applicant: SAFRAN AIRCRAFT ENGINES
    Inventors: Daniel Marius MAN, Maxime Didier DELABRIERE, Pierre Hervé MARCHE, Pascal Pierre ROUTIER
  • Patent number: 9103212
    Abstract: A method to prevent blockage of air passages in curvic couplings between drive parts and to prevent potential damage to the drive parts during weakening of protective elements. To this end, axial abutments are formed by ring gears of the curvic couplings. A coupling includes two rings, each ring being on the end of one drive part and engaged with the other so as to transmit to the drive part a rotation around a central axis while allowing air to pass between male and female portions of the teeth of the rings behind a bearing area. The rings are extended in an at least partially radial manner relative to each other to form an outer ring extension and an inner ring extension respectively facing elements surrounding the drive part that are mounted onto the other ring. The rotor lines can be used in turbine engines.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: August 11, 2015
    Assignee: TURBOMECA
    Inventors: Pascal Pierre Le Brusq, Jean-Philippe Ousty, Lionel Scuiller
  • Patent number: 8923470
    Abstract: The container is comprised of a side wall of which the end edges are each provided with a blocking member, of which at least one is inserted in order to close an opening. The peripheral outline of the inserted blocking member and the interior outline of the associated end edge of the side wall have generally complementary shapes on at least one portion of their respective heights, in such a way that said inserted blocking member comes to be housed on at least one portion of its height in the space defined by said end edge of the side wall and comes to bear against said end edge by adjusting lugs in recesses of complementary shape. The inclined joining surfaces form an angle from 20° to 40° with the axis of the container.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 30, 2014
    Assignee: Areva NC
    Inventors: Bruno Convert, Thierry Favre, Jean Hericourt, Arnauld Deniau, Pascal Pierre, Badia Amekraz
  • Patent number: 8841462
    Abstract: The invention relates to bicyclic heterocycles of formulae I and II with anti-cancer and/or anti-inflammatory activity and more specifically with MEK kinase inhibitory activity. The invention provides compositions and methods useful for inhibiting abnormal cell growth, treating a hyperproliferative disorder, or treating an inflammatory disease in a mammal. The invention also relates to methods of using the compounds for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, or associated pathological conditions.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: September 23, 2014
    Inventors: Robert A. Heald, Philip Jackson, Joseph P. Lyssikatos, Stephen Price, Pascal Pierre Alexandre Savy
  • Patent number: 8653089
    Abstract: Formula I compounds, including stereoisomers, geometric isomers, tautomers, metabolites and pharmaceutically acceptable salts thereof, are useful for inhibiting the delta isoform of PI3K, and for treating disorders mediated by lipid kinases such as inflammation, immunological disorders, and cancer. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: February 18, 2014
    Assignee: F. Hoffmann-La Roche AG
    Inventors: Robert Heald, Stephen Price, Brian Safina, Pascal Pierre Alexandre Savy, Eileen Mary Seward, Daniel P. Sutherlin, Bohdan Waszkowycz