Patents by Inventor Patricia A. Hooks

Patricia A. Hooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9415378
    Abstract: A dehydrogenation catalyst is formed by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3), a lanthanum (La) source, a cerium (Ce) source, a barium (Ba) source, a zirconium (Zr) source, and water into a shaped body. The shaped body is calcined at a temperature of at least 750° C. to form a catalyst support. The catalyst support is treated with a dehydrogenation catalyst component to form a treated catalyst support containing the dehydrogenation catalyst component. The treated catalyst support is then calcined. The resulting catalyst composition may be used by contacting a paraffin hydrocarbon feed with a catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair, Xiankuan Zhang
  • Patent number: 9364815
    Abstract: A method of forming a dehydrogenation catalyst support is carried out by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3) and water into a support material. The support material is particulized. The particulized support material is compressed to a pressure of at least 5,000 psig to form a shaped body. The shaped body is calcined in pure steam at a temperature of at least 750° C. for at least 0.25 hours to form a catalyst support having an average pore diameter of 200 ? or greater. The catalyst support can then be treated with a dehydrogenation catalyst component so that the catalyst support contains the dehydrogenation catalyst component to form a dehydrogenation catalyst that can then be used by contacting a hydrocarbon feed with the catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: June 14, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20150151283
    Abstract: A dehydrogenation catalyst is formed by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3), a lanthanum (La) source, a cerium (Ce) source, a barium (Ba) source, a zirconium (Zr) source, and water into a shaped body. The shaped body is calcined at a temperature of at least 750° C. to form a catalyst support. The catalyst support is treated with a dehydrogenation catalyst component to form a treated catalyst support containing the dehydrogenation catalyst component. The treated catalyst support is then calcined. The resulting catalyst composition may be used by contacting a paraffin hydrocarbon feed with a catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20150126792
    Abstract: A method of forming a dehydrogenation catalyst support is carried out by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3) and water into a support material. The support material is particulized. The particulized support material is compressed to a pressure of at least 5,000 psig to form a shaped body. The shaped body is calcined in pure steam at a temperature of at least 750° C. for at least 0.25 hours to form a catalyst support having an average pore diameter of 200 ? or greater. The catalyst support can then be treated with a dehydrogenation catalyst component so that the catalyst support contains the dehydrogenation catalyst component to form a dehydrogenation catalyst that can then be used by contacting a hydrocarbon feed with the catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20140200384
    Abstract: A catalyst composition useful for the dehydrogenation of hydrocarbon comprises components (A)-(G). Component (A) is a catalyst substrate. (B) is platinum. (C) is at least one of germanium, tin, lead, gallium, indium, and titanium. (D) is phosphorus, the total amount of component (D) being at a level of from 1 wt. % to 3 wt. %. (E) is at least one of magnesium, calcium, strontium, barium, radium, and a lanthanide, the total amount of component (E) being at a level of from 0.1 wt. % to 5 wt. %. (F) is chloride at a level of 0.1 wt. % to 2 wt. %. Component (G) is manganese. The catalyst may be used in the conversion of hydrocarbons wherein a hydrocarbon feed is contacted with the catalyst within a reactor under hydrocarbon conversion reaction conditions to form hydrocarbon conversion products. Sources of the various components are combined in a method to form the catalyst composition.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20050027133
    Abstract: This invention is for a method of preparing a supported silver-containing catalyst for use in a process of making an alkene oxide from an alkene and an oxygen-containing gas by oxidation of the alkene to the corresponding epoxide. The catalyst contains metallic silver on a support. The catalyst may also contain small amount of compounds of metals or halides as promoters to improve selectivity, activity, conversion, stability or yield. The catalyst is prepared by forming a slurry of a silver compound, water and one or more organic compounds having at least one functional group of the formula —NX2, —OX or [(?O) (—OX)] wherein X is hydrogen or an alkyl of one to three carbon atoms, X being the same or different, and wherein at least one functional group is bound to a terminal carbon. This slurry is formed before contact with the support material to deposit silver on the support.
    Type: Application
    Filed: December 19, 2003
    Publication date: February 3, 2005
    Inventors: Patricia Hooks, David Sullivan, Michael Mier, Jaap van Hal, Xiankuan Zhang
  • Publication number: 20050027134
    Abstract: This invention is for a support for a silver-containing catalyst which can be used in a method of making an alkene oxide from an alkene and an oxygen-containing gas by oxidation of the alkene to the corresponding epoxide, such as propylene to propylene oxide. The support is an alkaline earth metal carbonate, such as calcium carbonate, and the shape of the support is not regular rhombohedral, cubic nor a blend of regular rhombohedral and cubic. Preferably, the shape of the support is scalenohedral, irregular rhombohedral, acicular or prismatic. The catalyst may contain optional promoters, such as potassium, chlorine, molybdenum, rhenium, tungsten, gold, thallium, yttrium, niobium, indium, barium, cobalt or cerium, and the support may contain an additional support material, such as an alkaline earth oxide.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 3, 2005
    Inventors: Patricia Hooks, David Sullivan, Michael Mier, Jaap van Hal, Xiankuan Zhang
  • Patent number: 6395669
    Abstract: A catalyst component formed by the steps of contacting a transition metal-containing metallocene of a transition metal of Group 4, 5 or 6 of the Periodic Table of the Elements with silica or an organic support. This product is contacted with an organomagnesium compound or complex followed by contact with an alcohol and a silane. Finally, the so-contacted product is contacted with a Group 4, 5 or. 6 transition metal-containing non-metallocene compound. The component is preferably combined with an aluminum-containing cocatalyst to form a catalyst system.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 28, 2002
    Assignee: Equistar Chemicals, LP
    Inventors: William J. Sartain, Patricia A. Hooks, Keta M. Lindstrom, Stella L. Ellis, Douglas D. Klendworth, Albert P. Masino, Richard W. Fries, Therese A. Pastrick