Patents by Inventor Patricia A. Mulawa

Patricia A. Mulawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200182179
    Abstract: Technical methods described herein include an emissions control system for treating exhaust gas from an internal combustion engine in a motor vehicle. The emissions control system includes a three-reaction oxygen storage model. The system further includes a three-way catalyst and a controller that controls an oxygen storage level for the three-way catalyst. The controller determines a first reaction rate representing a net rate of cerium oxidation by oxygen, a second reaction rate representing a net rate of cerium reduction by carbon monoxide, and a third reaction rate representing a net rate of cerium reduction by hydrogen. The controller further determines the oxygen storage level based on the first reaction rate, the second reaction rate, and the third reaction rate.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: Gongshin Qi, Sergio A. Mendoza Galvis, Se H. Oh, Min Sun, Wei Li, Patricia A. Mulawa
  • Patent number: 8713914
    Abstract: A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 6, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Schmieg, Michael B. Viola, Shi-Wai S. Cheng, Patricia A. Mulawa, David L. Hilden, Thompson M. Sloane, Jong H. Lee
  • Patent number: 8186151
    Abstract: A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 29, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael B. Viola, Steven J. Schmieg, Thompson M. Sloane, David L. Hilden, Patricia A. Mulawa, Jong H. Lee, Shi-Wai S. Cheng
  • Publication number: 20110072790
    Abstract: A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Steven J. Schmieg, Michael B. Viola, Shi-Wai S. Cheng, Patricia A. Mulawa, David L. Hilden, Thompson M. Sloane, Jong H. Lee
  • Publication number: 20110041482
    Abstract: An exhaust gas aftertreatment device includes a single intake path for an exhaust gas feedstream from an internal combustion engine and a coated substrate including a first substrate portion fluidly in parallel with a second substrate portion. A flow modification device selectively restricts flow of the exhaust gas feedstream exclusively to the first substrate portion, exclusively to the second substrate portion, and concurrently to the first substrate portion and the second substrate portion in controllably variable proportions.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Shi-Wai S. Cheng, Terry A. Talsma, Patricia A. Mulawa
  • Publication number: 20100307140
    Abstract: A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 9, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael B. Viola, Steven J. Schmieg, Thompson M. Sloane, David L. Hilden, Patricia A. Mulawa, Jong H. Lee, Shi-Wai S. Cheng