Patents by Inventor Patricia Ann Piers

Patricia Ann Piers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9622856
    Abstract: An intraocular lens for providing a subject with vision at various distances includes an optic having a first surface with a first shape, an opposing second surface with a second shape, a multifocal refractive profile, and one or more diffractive portions. The optic may include at least one multifocal diffractive profile. In some embodiments, multifocal diffractive and the multifocal refractive profiles are disposed on different, distinct, or non-overlapping portions or apertures of the optic. Alternatively, portions of the multifocal diffractive profiles and the multifocal refractive profiles may overlap within a common aperture or zone of the optic.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 18, 2017
    Assignee: Abbott Medical Optics Inc.
    Inventors: Hendrik A Weeber, Patricia Ann Piers, Mark H Bandhauer, Marrie H Van Der Mooren, Huawei Zhao
  • Publication number: 20170065165
    Abstract: The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface us a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Sverker Norrby, Pablo Artal, Patricia Ann Piers, Marrie H. Van Der Mooren
  • Patent number: 9579192
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 28, 2017
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 9561098
    Abstract: An intraocular lens (IOL), system, and method having a base lens and a complementary lens selected to form a curved image surface matching a retina surface when placed in an eye's line of sight.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: February 7, 2017
    Assignee: Abbott Medical Optics Inc.
    Inventors: Kaccie Y. Li, Hendrik A. Weeber, Carmen Canovas Vidal, Patricia Ann Piers, Huawei Zhao, Robert Rosén
  • Patent number: 9554696
    Abstract: Systems and methods for measuring dysphotopsia are provided. These systems and methods can be used to objectively quantify positive and negative dysphotopsia. One embodiment provides a system and method for determining dysphotopsia that uses a first light source configured to provide light energy to illuminate a model eye, a refractor for refracting the light energy from the first light source and directing it into the model eye, a first electronic light sensor for measuring an amount of light in the model eye; a second light source configured to provide light energy to illuminate the model eye, wherein the light energy from the second light source is introduced at an angle from the first light source; and a second electronic light sensor for measuring the amount of light in the model eye, wherein the second electronic light sensor is capable of taking measurements from various points around the model eye. Data from these measurements can then analyzed to provide an objective measurement of dysphotopsia.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 31, 2017
    Assignee: Abbott Medical Optics Inc.
    Inventors: Huawei Zhao, Mihai State, Luuk Franssen, Patricia Ann Piers, Hendrik A. Weeber, Marrie Van Der Mooren
  • Publication number: 20170007396
    Abstract: System, ophthalmic lens, and method for extending depth of focus includes an optic having a clear aperture disposed about a central axis. The optic includes a first surface and an opposing second surface. The first and second surfaces are configured to introduce an asymmetric aberration to the eye while maintaining the in-focus visual acuity.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 12, 2017
    Inventors: Hendrik A. Weeber, Patricia Ann Piers, Pablo Artal, Silvestre Manzanera
  • Patent number: 9504377
    Abstract: The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface as a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: November 29, 2016
    Assignee: AMO Groningen B.V.
    Inventors: Sverker Norrby, Pablo Artal, Patricia Ann Piers, Marrie Van Der Mooren
  • Patent number: 9456894
    Abstract: An intraocular lens for correcting or reducing the astigmatism of a cornea includes an optical element that has optical properties and characteristics that make it tolerant of rotational misalignment, when compared to a comparable lens having a uniform astigmatism orientation across its entire optical element, leading to more relaxed tolerances for a surgeon that implants the lens. The optical element of the toric ophthalmic lens has meridians associated therewith, including a high power meridian and a low power meridian orthogonal to the high power meridian. The optical element has at least one radially modulated meridian along which power monotonically varies with increasing radial position.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: October 4, 2016
    Assignee: Abbott Medical Optics Inc.
    Inventors: Huawei Zhao, Hendrik A Weeber, Patricia Ann Piers
  • Patent number: 9454018
    Abstract: System, ophthalmic lens, and method for extending depth of focus includes an optic having a clear aperture disposed about a central axis. The optic includes a first surface and an opposing second surface. The first and second surfaces are configured to introduce an asymmetric aberration to the eye while maintaining the in-focus visual acuity.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 27, 2016
    Assignee: AMO Groningen B.V.
    Inventors: Hendrik Albert Weeber, Patricia Ann Piers, Pablo Artal, Silverstre Manzanera
  • Publication number: 20160161364
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Application
    Filed: October 8, 2015
    Publication date: June 9, 2016
    Inventors: Aixa ALARCON HEREDIA, Carmen CANOVAS VIDAL, Robert ROSÉN, Henk A. WEEBER, Patricia Ann PIERS
  • Publication number: 20160067037
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 10, 2016
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 9211061
    Abstract: Systems and methods for providing improved techniques for evaluating performance of intraocular lenses. Such techniques can be used to evaluate lens designs and can help reduce the need for multiple clinical trials that may otherwise be needed to evaluate multiple design iterations. In one embodiment, a method is provided for method for evaluating performance of an intraocular lens, where the method comprises capturing a plurality of images through the intraocular lens at different focus positions; displaying at least one selected image from the plurality of images to a test subject; receiving input from the test subject indicative of perceived acuity of the at least one selected image; and determining a measure of intraocular lens performance from the received input.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 15, 2015
    Assignee: Abbott Medical Optics Inc.
    Inventors: Sanjeev Kasthurirangan, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20150320547
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: April 21, 2015
    Publication date: November 12, 2015
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Publication number: 20150305613
    Abstract: The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface as a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 29, 2015
    Inventors: Sverker Norrby, Pablo Artal, Patricia Ann Piers, Marrie Van Der Mooren
  • Publication number: 20150297342
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: March 10, 2015
    Publication date: October 22, 2015
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20150265399
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 24, 2015
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20150216404
    Abstract: Systems and methods for measuring dysphotopsia are provided. These systems and methods can be used to objectively quantify positive and negative dysphotopsia. One embodiment provides a system and method for determining dysphotopsia that uses a first light source configured to provide light energy to illuminate a model eye, a refractor for refracting the light energy from the first light source and directing it into the model eye, a first electronic light sensor for measuring an amount of light in the model eye; a second light source configured to provide light energy to illuminate the model eye, wherein the light energy from the second light source is introduced at an angle from the first light source; and a second electronic light sensor for measuring the amount of light in the model eye, wherein the second electronic light sensor is capable of taking measurements from various points around the model eye. Data from these measurements can then analyzed to provide an objective measurement of dysphotopsia.
    Type: Application
    Filed: November 26, 2014
    Publication date: August 6, 2015
    Inventors: Huawei Zhao, Mihai State, Luuk Franssen, Patricia Ann Piers, Hendrik A. Weeber, Marrie Van Der Mooren
  • Patent number: 8998415
    Abstract: The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface as a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: April 7, 2015
    Assignee: AMO Groningen B.V.
    Inventors: Sverker Norrby, Pablo Artal, Patricia Ann Piers, Marrie Van Der Mooren
  • Publication number: 20150094807
    Abstract: A method of designing a multifocal ophthalmic lens with one base focus and at least one additional focus, capable of reducing aberrations of the eye for at least one of the foci after its implantation, comprising the steps of: (i) characterizing at least one corneal surface as a mathematical model; (ii) calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model; (iii) modelling the multifocal ophthalmic lens such that a wavefront arriving from an optical system comprising said lens and said at least one corneal surface obtains reduced aberrations for at least one of the foci. There is also disclosed a method of selecting a multifocal intraocular lens, a method of designing a multifocal ophthalmic lens based on corneal data from a group of patients, and a multifocal ophthalmic lens.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Patricia Ann Piers, Hendrik A. Weeber, Sverker Norrby
  • Patent number: 8906089
    Abstract: A method of designing a multifocal ophthalmic lens with one base focus and at least one additional focus, capable of reducing aberrations of the eye for at least one of the foci after its implantation, comprising the steps of: (i) characterizing at least one corneal surface as a mathematical model; (ii) calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model; (iii) modelling the multifocal ophthalmic lens such that a wavefront arriving from an optical system comprising said lens and said at least one corneal surface obtains reduced aberrations for at least one of the foci. There is also disclosed a method of selecting a multifocal intraocular lens, a method of designing a multifocal ophthalmic lens based on corneal data from a group of patients, and a multifocal ophthalmic lens.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: December 9, 2014
    Assignee: AMO Groningen B.V.
    Inventors: Patricia Ann Piers, Hendrick A. Weeber, Sverker Norrby