Patents by Inventor Patricia XU

Patricia XU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921321
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: March 5, 2024
    Assignee: Cornell University
    Inventors: Patricia Xu, Robert F. Shepherd
  • Patent number: 11918441
    Abstract: A highly extensible nonwoven web is provided. The highly extensible nonwoven web may include continuous multi-component fibers. The continuous multi-component fibers may include polypropylene, wherein the polypropylene has a crystallinity of less than about 41%. The polypropylene may have a melting temperature of less than about 161° C. The highly extensible nonwoven web may define a plurality of apertures. The apertures may be patterned. The highly extensible nonwoven web may form a portion of an absorbent article.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: March 5, 2024
    Assignee: The Procter & Gamble Company
    Inventors: Han Xu, Meganne Frisch, Jaroslav Kohut, Sascha Kreisel, Jiri Kummer, Fang Liu, Michael J. Roddy, Patricia Rolon, Eric R. Schurdak
  • Publication number: 20230048203
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Application
    Filed: September 12, 2022
    Publication date: February 16, 2023
    Inventors: Patricia Xu, Robert F. Shepherd
  • Patent number: 11500152
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 15, 2022
    Assignee: Cornell University
    Inventors: Patricia Xu, Robert F. Shepherd
  • Publication number: 20200400886
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Application
    Filed: November 29, 2018
    Publication date: December 24, 2020
    Inventors: Patricia XU, Robert F. SHEPHERD