Patents by Inventor Patrick Allen Lowe

Patrick Allen Lowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140228
    Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV). The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; and a cradle that is connected to the slide mechanism and which defines a chamber that is configured to receive the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position. The cradle includes: an upper shell; a lower shell that is connected to the upper shell; and at least one thermal insulator that is located between the upper shell and the lower shell.
    Type: Application
    Filed: December 12, 2023
    Publication date: May 2, 2024
    Inventors: Patrick Allen Lowe, Yee Shan Woo, Yevgeniy Kozlenko, Christopher C. Berthelet
  • Patent number: 11947348
    Abstract: An unmanned aerial vehicle (UAV) controller may have control elements configured to receive inputs from a user. A cover may be coupled to the controller. The cover may be movable between a closed position in which the control elements are covered and an open position in which the control elements are exposed. An antenna may be integrated in the cover. The antenna may be electrically connected to circuitry in the controller for communicating with a UAV. In some implementations, a conductive plane and/or an insulating plane may be integrated in the cover. In some implementations, a heatsink, a fan, and/or a support mechanism may be arranged on an under portion of the controller. In some implementations, a circuit board including a cutout may be arranged inside the controller.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: April 2, 2024
    Assignee: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Christopher Brian Grasberger, Patrick Allen Lowe, Asher Mendel Robbins-Rothman, Yevgeniy Kozlenko, Logan Sweet, Blair Williams, Joseph Anthony Enke
  • Patent number: 11884422
    Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV). The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; and a cradle that is connected to the slide mechanism and which defines a chamber that is configured to receive the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position. The cradle includes: an upper shell; a lower shell that is connected to the upper shell; and at least one thermal insulator that is located between the upper shell and the lower shell.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 30, 2024
    Assignee: Skydio, Inc.
    Inventors: Patrick Allen Lowe, Yee Shan Woo, Yevgeniy Kozlenko, Christopher C. Berthelet
  • Patent number: 11818463
    Abstract: Embodiments are described for a stabilization system configured, in some embodiments, for stabilizing image capture from an aerial vehicle (e.g., a UAV). According to some embodiments, the stabilization systems employs both active and passive stabilization means. A passive stabilization assembly includes a counter-balanced suspension system that includes an elongated arm that extends into and is coupled to the body of a vehicle. The counter-balanced suspension system passively stabilizes a mounted device such as an image capture device to counter motion of the UAV while in use. In some embodiment the counter-balanced suspension system passively stabilizes a mounted image capture assembly that includes active stabilization means (e.g., a motorized gimbal and/or electronic image stabilization). In some embodiments, the active and passive stabilization means operate together to effectively stabilize a mounted image capture device to counter a wide range of motion characteristics.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 14, 2023
    Assignee: Skydio, Inc.
    Inventors: David Kalinowski, Stephen R. McClure, Patrick Allen Lowe, Daniel Thomas Adams, Benjamin Scott Thompson, Adam Parker Bry, Abraham Galton Bachrach
  • Publication number: 20230348100
    Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV) that includes: an enclosure defining a window that is configured to receive the UAV to allow for entry of the UAV into the base station and exit of the UAV from the base station; a door that is movably connected to the enclosure such that the door is repositionable between a closed position and an open position; a sealing member that extends about the window and which is configured for engagement with the door so as to form a seal therewith in the closed position; and a heating system that is supported by the enclosure and which is configured to heat the door and/or the sealing member to support operation (e.g., opening and closure) of the door in a cold environment, wherein the heating system includes at least one light source and at least one heating element.
    Type: Application
    Filed: August 31, 2022
    Publication date: November 2, 2023
    Inventors: Phoebe Josephine Altenhofen, Patrick Allen Lowe, Yevgeniy Kozlenko, Yee Shan Woo, Christopher C. Berthelet
  • Publication number: 20230348103
    Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV). The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; and a cradle that is connected to the slide mechanism and which defines a chamber that is configured to receive the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position. The cradle includes: an upper shell; a lower shell that is connected to the upper shell; and at least one thermal insulator that is located between the upper shell and the lower shell.
    Type: Application
    Filed: August 31, 2022
    Publication date: November 2, 2023
    Inventors: Patrick Allen Lowe, Yee Shan Woo, Yevgeniy Kozlenko, Christopher C. Berthelet
  • Publication number: 20230348105
    Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV). The base station includes: a metallic enclosure; a first electronics module; a second electronics module; and a third electronics module, wherein the first electronics module, the second electronics module, and the third electronics module are each configured for individual removal from the metallic enclosure. The metallic enclosure is configured to receive the UAV and includes a front end having a front door and a rear end having a rear door. The rear door is located adjacent to the first electronics module and includes a metallic panel that is positioned in correspondence with the first electronics module so as to create a Faraday cage for the first electronics module and thereby reduce electromagnetic emissions from the base station.
    Type: Application
    Filed: August 31, 2022
    Publication date: November 2, 2023
    Inventors: Christopher Brian Grasberger, Kevin Patrick Smith O'Leary, Yee Shan Woo, Dylan Matthew Callaway, Asher Mendel Robbins-Rothman, Christopher C. Berthelet, Patrick Allen Lowe
  • Publication number: 20230348104
    Abstract: A base station for an unmanned aerial vehicle (UAV) is disclosed. The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; a cradle that is connected to the slide mechanism and which is configured for docking with the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position; and a charging hub that is connected to the slide mechanism and which is configured for electrical connection to a power source of the UAV to charge the power source.
    Type: Application
    Filed: August 31, 2022
    Publication date: November 2, 2023
    Inventors: Patrick Allen Lowe, Yevgeniy Kozlenko, Christopher C. Berthelet, Christopher Brian Grasberger, Roderick Donald Bacon
  • Publication number: 20230347765
    Abstract: A method of using a base station to charge an unmanned aerial vehicle (UAV) is disclosed. The method includes: docking the UAV with a cradle of the base station; retracting the cradle into an enclosure of the base station via a slide mechanism; and electrically connecting a power source of the UAV to a charging hub connected to the slide mechanism to thereby charge the power source.
    Type: Application
    Filed: August 31, 2022
    Publication date: November 2, 2023
    Inventors: Patrick Allen Lowe, Yevgeniy Kozlenko, Christopher C. Berthelet, Christopher Brian Grasberger, Roderick Donald Bacon
  • Publication number: 20230166862
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: June 1, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20230144408
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: July 26, 2022
    Publication date: May 11, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20230014224
    Abstract: A base station is disclosed for use with an unmanned aerial vehicle (UAV). The base station includes: an enclosure; a cradle that is configured to charge a power source of the UAV during docking with the base station; and a temperature control system that is connected to the cradle and which is configured to vary temperature of the power source of the UAV. The temperature control system includes: a thermoelectric conditioner (TEC); a first air circuit that is thermally connected to the TEC and which is configured to regulate temperature of the TEC; and a second air circuit that is thermally connected to the TEC such that the TEC is located between the first air circuit and the second air circuit. The second air circuit is configured to direct air across the cradle to thereby heat or cool the power source of the UAV when docked with the base station.
    Type: Application
    Filed: January 21, 2022
    Publication date: January 19, 2023
    Inventors: Patrick Allen Lowe, Christopher Brian Grasberger, Kevin Patrick Smith O'leary, Christopher C. Berthelet, Yee Shan Woo, Brett Nicholas Randolph, Phoebe Josephine Altenhofen, Zachary Albert West
  • Publication number: 20230017530
    Abstract: A base station is disclosed that is configured for use with a UAV. The base station includes: an enclosure with an outer housing that defines a roof section and an inner housing that is connected to the outer housing; one or more heating elements that are supported by the enclosure and which are configured to heat the roof section; one or more fiducials that are supported by the enclosure; an illumination system that is supported by the enclosure and which is configured to illuminate the one or more fiducials; and a visualization system that is supported by the enclosure.
    Type: Application
    Filed: January 21, 2022
    Publication date: January 19, 2023
    Inventors: Patrick Allen Lowe, Christopher Brian Grasberger, Kevin Patrick Smith O'leary, Christopher C. Berthelet, Yee Shan Woo, Brett Nicholas Randolph, Phoebe Josephine Altenhofen, Zachary Albert West
  • Publication number: 20230013552
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a power source. The power source includes: one or more power cells; one or more thermal transfer members that are thermally connected to the one or more power cells; and a heat exchanger that is thermally connected to the one or more thermal transfer members such that the one or more thermal transfer members and the heat exchanger facilitate a transfer of thermal energy between the power source and ambient air to decrease or increase temperature of the power source.
    Type: Application
    Filed: January 21, 2022
    Publication date: January 19, 2023
    Inventors: Patrick Allen Lowe, Christopher Brian Grasberger, Kevin Patrick Smith O'leary, Christopher C. Berthelet, Yee Shan Woo, Brett Nicholas Randolph, Phoebe Josephine Altenhofen, Zachary Albert West, Jack Zi Qi Ye
  • Publication number: 20230002074
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220411103
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220411102
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220393561
    Abstract: An actuator is introduced that utilizes the forces that result from placing a current carrying coil in a magnetic field to rotate a connected object about at least one axis. In some embodiments, the introduced coil actuator includes a coil of conductor coupled to an arm or other type of structural element that extends radially from an axis of rotation. The introduced coil actuator can be utilized to provide motion control in a variety of different applications such as gimbal mechanisms. In some embodiments, the introduced coil actuator can be implemented in a gimbal mechanism for adjusting an orientation of a device such as a camera relative to a connected platform such as the body of an aerial vehicle.
    Type: Application
    Filed: July 27, 2022
    Publication date: December 8, 2022
    Applicant: Skydio, Inc.
    Inventors: Daniel Thomas Adams, Patrick Allen Lowe, Benjamin Scott Thompson, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20220355952
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220326705
    Abstract: An unmanned aerial vehicle (UAV) controller may have control elements configured to receive inputs from a user. A cover may be coupled to the controller. The cover may be movable between a closed position in which the control elements are covered and an open position in which the control elements are exposed. An antenna may be integrated in the cover. The antenna may be electrically connected to circuitry in the controller for communicating with a UAV. In some implementations, a conductive plane and/or an insulating plane may be integrated in the cover. In some implementations, a heatsink, a fan, and/or a support mechanism may be arranged on an under portion of the controller. In some implementations, a circuit board including a cutout may be arranged inside the controller.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 13, 2022
    Inventors: Benjamin Scott Thompson, Christopher Brian Grasberger, Patrick Allen Lowe, Asher Mendel Robbins-Rothman, Yevgeniy Kozlenko, Logan Sweet, Blair Williams, Joseph Anthony Enke