Patents by Inventor Patrick Burk
Patrick Burk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11836763Abstract: Methods and systems for facilitating a program with participating merchants and consumers are described. In some embodiments, a method includes receiving a wish list of a user. The wish list may include items or services sold by merchants participating in the program. The wish list may be published to the merchants participating in the program. A location of the user may be determined, and an offer from one of the participating merchants may be received, where the offer is based on the location of the user. A total cost of the offer may be calculated by analyzing the offer. The user may be notified of the offer and the total cost.Type: GrantFiled: July 28, 2020Date of Patent: December 5, 2023Assignee: United Services Automobile Association (USAA)Inventors: Marty Lee Mendivil, Rickey Dale Burks, Charles Lee Oakes, III, Michael Patrick Bueche, Jr., Christopher A. Jackson, Margaret M. Tuschinski, Craig Kincaid, Luke James Gradeless, Elizabeth Jackson, Stephen Basilotto
-
Publication number: 20230081351Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: ApplicationFiled: November 15, 2022Publication date: March 16, 2023Inventors: Ivor BULL, Wen-Mei XUE, Patrick BURK, R. Samuel BOORSE, William M. JAGLOWSKI, Gerald Stephen KOERMER, Ahmad MOINI, Joseph A. PATCHETT, Joseph C. DETTLING, Matthew Tyler CAUDLE
-
Patent number: 11529619Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: GrantFiled: April 22, 2020Date of Patent: December 20, 2022Assignee: BASF CorporationInventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Patent number: 11167273Abstract: The present disclosure provides SCR catalyst compositions, catalyst articles, and catalyst systems, as well as methods of reducing the amount of NOx present in an engine exhaust gas, particularly exhaust from a gasoline engine. The catalyst compositions particularly can comprise a doped ceria substrate, particularly a ceria support doped with at least a niobia component, and optionally further doped with a further material, particularly a base metal oxide (BMO).Type: GrantFiled: October 2, 2018Date of Patent: November 9, 2021Assignee: BASF CorporationInventors: Xiaolai Zheng, Patrick Burk
-
Patent number: 10792648Abstract: Described are compositions and catalytic articles comprising both a first molecular sieve promoted with copper and a second molecular sieve promoted with iron, the first and second molecular sieves having a d6r unit and the first molecular sieves having cubic shaped crystals with an average crystal size of about 0.5 to about 2 microns. The weight ratio of the copper-promoted molecular sieve to the iron-promoted molecular sieve can be about 1:1 to about 4:1. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.Type: GrantFiled: October 30, 2015Date of Patent: October 6, 2020Assignee: BASF CorporationInventors: Jaya L. Mohanan, Jeff Yang, Patrick Burk, Kenneth E. Voss
-
Publication number: 20200290022Abstract: The present disclosure provides SCR catalyst compositions, catalyst articles, and catalyst systems, as well as methods of reducing the amount of NOx present in an engine exhaust gas, particularly exhaust from a gasoline engine. The catalyst compositions particularly can comprise a doped ceria substrate, particularly a ceria support doped with at least a niobia component, and optionally further doped with a further material, particularly a base metal oxide (BMO).Type: ApplicationFiled: October 2, 2018Publication date: September 17, 2020Applicant: BASF CorporationInventors: Xiaolai ZHENG, Patrick BURK
-
Publication number: 20200261895Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: ApplicationFiled: April 22, 2020Publication date: August 20, 2020Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Patent number: 10654031Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: GrantFiled: November 7, 2017Date of Patent: May 19, 2020Assignee: BASF CorporationInventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Publication number: 20200055035Abstract: The invention provides a selective catalytic reduction (SCR) catalyst effective in the abatement of nitrogen oxides (NOx), the SCR catalyst comprising a metal-promoted molecular sieve promoted with a metal selected from iron, copper, and combinations thereof, wherein the metal is present in an amount of 2.6% by weight or less on an oxide basis based on the total weight of the metal-promoted molecular sieve. A catalyst article, an exhaust gas treatment system method, and a method treating an exhaust gas stream, each comprising the SCR catalyst of the invention, are also provided. The SCR catalyst is particularly useful for treatment of exhaust from a lean burn gasoline engine.Type: ApplicationFiled: February 21, 2018Publication date: February 20, 2020Applicants: BASF Corporation, N. E. CHEMCAT CORPORATIONInventors: Xiaolai Zheng, Mahmuda Choudhury, Patrick Burk, Makoto Nagata, Yasuharu Kanno, Hiroki Nakayama
-
Publication number: 20180056281Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: ApplicationFiled: November 7, 2017Publication date: March 1, 2018Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Patent number: 9839905Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: GrantFiled: December 17, 2015Date of Patent: December 12, 2017Assignee: BASF CORPORATIONInventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Publication number: 20170333883Abstract: Described are compositions and catalytic articles comprising both a first molecular sieve promoted with copper and a second molecular sieve promoted with iron, the first and second molecular sieves having a d6r unit and the first molecular sieves having cubic shaped crystals with an average crystal size of about 0.5 to about 2 microns. The weight ratio of the copper-promoted molecular sieve to the iron-promoted molecular sieve can be about 1:1 to about 4:1. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.Type: ApplicationFiled: October 30, 2015Publication date: November 23, 2017Inventors: Jaya L. Mohanan, Jeff Yang, Patrick Burk, Kenneth E. Voss
-
Patent number: 9656254Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: GrantFiled: December 17, 2015Date of Patent: May 23, 2017Assignee: BASF CORPORATIONInventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Patent number: 9611774Abstract: A catalyst for the treatment of exhaust gas emissions is disclosed. The catalyst can comprise ceria-alumina particles having a ceria phase present in a weight percent of the composite in the range of about 20% to about 80% on an oxide basis, an alkaline earth metal component supported on the ceria-alumina particles, wherein the CeO2 is present in the form of crystallites that are hydrothermally stable and have an average crystallite size less than 160 ? after aging at 950° C. for 5 hours in 2% O2 and 10% steam in N2.Type: GrantFiled: August 25, 2014Date of Patent: April 4, 2017Assignee: BASF CorporationInventors: Wen-Mei Xue, Xinyi Wei, Marcus Hilgendorff, Patrick Burk
-
Patent number: 9610564Abstract: A lean NOx trap for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO), and the trapping and reduction of nitrogen oxides (NOx) is disclosed. Nitrogen oxide storage catalysts can comprise a layer on a substrate including ceria-alumina particles having a ceria phase present in a weight percent of the composite in the range of about 20% to about 80% on an oxide basis, an alkaline earth metal component supported on the ceria-alumina particles, wherein the CeO2 is present in the form of crystallites that are hydrothermally stable and have an average crystallite size less than 130 ? after aging at 950° C. for 5 hours in 2% O2 and 10% steam in N2.Type: GrantFiled: March 11, 2014Date of Patent: April 4, 2017Assignee: BASF CorporationInventors: Wen-Mei Xue, Xinyi Wei, Marcus Hilgendorff, Patrick Burk
-
Patent number: 9533295Abstract: A diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) is described. More particularly, the present invention is directed to a washcoat composition comprising high silica to alumina zeolite and platinum and palladium such that the zeolite minimizes negative interactions of these platinum group metals with the zeolite.Type: GrantFiled: April 5, 2012Date of Patent: January 3, 2017Assignees: BASF CORPORATION, BASF SEInventors: Torsten W. Müller-Stach, Alfred H. Punke, Gerd Grubert, Marcus Hilgendorff, Helke Doering, Torsten Neubauer, Xiaolai Zheng, Chung-Zong Wan, Wen-Mei Xue, Patrick Burk
-
Patent number: 9498775Abstract: The present invention is directed to a lean NOx trap diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the trapping and reduction of nitrogen oxides (NOx). Catalytic composites can comprise a catalytic material on a carrier, the catalytic material comprising a first NOx trap layer that comprises a NOx sorbent and one or more precious metal components located on the carrier and a second NOx trap layer containing hydrocarbon trapping functionality located over the first NOx trap layer that comprises a NOx sorbent, one or more precious metal components, and a zeolite, for example a beta zeolite, wherein the zeolite is substantially free of framework aluminum. Such zeolites are characterized by high crystallinity and/or by being substantially free of framework aluminum to minimize surface acidity.Type: GrantFiled: April 6, 2012Date of Patent: November 22, 2016Assignee: BASF CorporationInventors: Xiaolai Zheng, Chung-Zong Wan, Patrick Burk
-
Patent number: 9486792Abstract: Described are compositions and catalytic articles comprising both a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.Type: GrantFiled: December 8, 2014Date of Patent: November 8, 2016Assignees: BASF Corporation, Heesung Cataysts CorporationInventors: Jaya L. Mohanan, Patrick Burk, Michael Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
-
Publication number: 20160101412Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: ApplicationFiled: December 17, 2015Publication date: April 14, 2016Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
-
Publication number: 20160101411Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.Type: ApplicationFiled: December 17, 2015Publication date: April 14, 2016Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle