Patents by Inventor Patrick Cahalan

Patrick Cahalan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11622892
    Abstract: A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 11, 2023
    Assignee: ENSION INC.
    Inventors: Ali Hussain, Patrick Cahalan, Linda Cahalan
  • Publication number: 20220196532
    Abstract: A flow-based biological testing platform comprises a stationary base; a reciprocating base mounted on the stationary base, configured for reciprocating motion on the base; and at least one flexible tubular test loop coupled to both the stationary and the reciprocating base, wherein each test loop is configured to be selectively filled with a biologic fluid, and wherein each test loop includes at least one check valve mounted within the test loop allowing flow in a single flow direction within the test loop, and a fluid loading and removal system attached to the stationary base allowing fluid to be supplied to and withdrawn from the flexible tubular test loop; wherein reciprocation of the reciprocating base induces fluid flow in a single direction within each flexible test loop.
    Type: Application
    Filed: October 18, 2021
    Publication date: June 23, 2022
    Inventors: Linda Cahalan, Patrick Cahalan, Michael Hegy
  • Publication number: 20210100935
    Abstract: A method of manufacturing a medical product having an engineered heparin bioactive matrix for clinical application on a blood contacting surface comprises: a) activating a blood contacting surface of at least one component of a medical device via one of plasma treatment or gas activation; b) assembling the medical product; c) Setting up medical device for wet chemistry in which wet chemistry treatments follows a blood flow path through device; d) enhancing at least the blood contacting surface with a wet chemistry treatment including an aqueous solution having a strong oxidizing agent, such as ammonium persulfate; e) adding a positively charged spacer molecule to at least the blood contacting surface with a wet chemistry treatment including an aqueous solution having a cationic polymer, such as PEI; and f) covalently immobilizing heparin to at least the blood contacting surface with a wet chemistry treatment including heparin, preferably deaminated heparin.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 8, 2021
    Inventors: Ali Hussain, Linda Cahalan, Patrick Cahalan
  • Publication number: 20210007896
    Abstract: A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
    Type: Application
    Filed: August 17, 2020
    Publication date: January 14, 2021
    Inventors: Ali Hussain, Patrick Cahalan, Linda Cahalan
  • Patent number: 10744039
    Abstract: A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: August 18, 2020
    Assignee: ENSION INC.
    Inventors: Ali Hussain, Patrick Cahalan, Linda Cahalan
  • Patent number: 10512465
    Abstract: An apparatus for stimulation of collateral development in ischemic cardiac regions comprises a mechanism for fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated method for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: December 24, 2019
    Assignee: ENSION, INC.
    Inventors: Mark J Gartner, Patrick Cahalan, Linda Cahalan
  • Patent number: 10456227
    Abstract: A method of treating a tubular medical device with a biomolecule comprises the steps of: a) providing a polyolefin tubular substrate forming a tubular medical device; b) cleaning the tubular polyolefin substrate; c) exposing the tubular polyolefin substrate to a reactive gas containing at least one of acrylic acid and siloxane and to plasma energy to yield a plasma-deposited coating on at least one surface of the tubular polyolefin substrate; and d) attaching a biomolecule to the polyolefin substrate following formation of the plasma-deposited coating on at least one surface of the tubular polyolefin substrate, and wherein the biomolecule is at least one of an antibacterial agent, antimicrobial agent, anticoagulant, heparin, antithrombotic agent, platelet agent, anti-inflammatory, enzyme, catalyst, hormone, growth factor, drug, vitamin, antibody, antigen, protein, nucleic acid, dye, a DNA segment, an RNA segment, protein, and peptide.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: October 29, 2019
    Assignee: ENSION INC.
    Inventors: Ali Hussain, Linda Cahalan, Greg Johnson, Mark Gartner, Patrick Cahalan, Brian J Fill, Jeffrey W. Speakman
  • Publication number: 20180125620
    Abstract: A method of treating a tubular medical device with a biomolecule comprises the steps of: a) providing a polyolefin tubular substrate forming a tubular medical device; b) cleaning the tubular polyolefin substrate; c) exposing the tubular polyolefin substrate to a reactive gas containing at least one of acrylic acid and siloxane and to plasma energy to yield a plasma-deposited coating on at least one surface of the tubular polyolefin substrate; and d) attaching a biomolecule to the polyolefin substrate following formation of the plasma-deposited coating on at least one surface of the tubular polyolefin substrate, and wherein the biomolecule is at least one of an antibacterial agent, antimicrobial agent, anticoagulant, heparin, antithrombotic agent, platelet agent, anti-inflammatory, enzyme, catalyst, hormone, growth factor, drug, vitamin, antibody, antigen, protein, nucleic acid, dye, a DNA segment, an RNA segment, protein, and peptide.
    Type: Application
    Filed: July 3, 2017
    Publication date: May 10, 2018
    Inventors: Ali Hussain, Linda Cahalan, Greg Johnson, Mark Gartner, Patrick Cahalan, Brian J. Fill, Jeffrey W. Speakman
  • Publication number: 20180064580
    Abstract: A method of preparing a crosslinked, collagen-based wound care dressing is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for hernia repair prosthetics and surgical incision closure members, prepared using the method above.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 8, 2018
    Inventors: Ali HUSSAIN, Patrick Cahalan, Linda Cahalan
  • Patent number: 9796769
    Abstract: A method of preparing a crosslinked, collagen-based medical scaffold is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for wound care dressings, hernia repair prosthetics, and surgical incision closure members, prepared using the method above.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: October 24, 2017
    Assignee: ENSION INC.
    Inventors: Ali Hussain, Patrick Cahalan, Linda Cahalan
  • Patent number: 9693841
    Abstract: A variety of medical devices including staples sutures and dental floss with surface treatment on at least one tissue-facing surface to improve biologic function such as to control tissue adhesion are disclosed including heparin surface treatment which provides heparin present in an amount to yield heparin bioactivity of at least one of i) an ATIII binding of at least 2 pmol/cm2, and ii) a thrombin deactivation of at least 0.2 IU/cm2; an acrylic surface treatment for coupling thereto of a heparin surface treatment, a collagen surface treatment or both; and an amino-functional polysiloxane surface treatment for coupling thereto of a heparin surface treatment.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 4, 2017
    Assignee: ENSION, INC.
    Inventors: Ali Hussain, Linda Cahalan, Greg Johnson, Mark Gartner, Patrick Cahalan, Brian J Fill, Jeffrey W. Speakman
  • Publication number: 20170182308
    Abstract: An apparatus for stimulation of collateral development in ischemic cardiac regions comprises a mechanism for fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated method for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 29, 2017
    Inventors: Mark J Gartner, Patrick Cahalan, Linda Cahalan
  • Patent number: 9585665
    Abstract: A method for stimulation of collateral development in ischemic cardiac regions comprises the fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated apparatus for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: March 7, 2017
    Assignee: ENSION, INC.
    Inventors: Mark J Gartner, Patrick Cahalan, Linda Cahalan
  • Patent number: 9211369
    Abstract: An integrated blood pump oxygenator comprises an impeller housing supporting an impeller with an annular hydrogel impeller packing material adjacent the bearings and around the shaft of the impeller. The oxygenator including a rollover outlet in the form of an annular chamber extending around a center pump housing member; and further including an annular chamber within an annular array of hollow fiber membranes in fluid communication with the annular chamber extending from the impeller around the center pump housing; wherein the annular chamber provides substantially perpendicular radial outward cross flow across the membranes.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 15, 2015
    Assignee: Ension, Inc
    Inventors: Mark J Gartner, Brian J Fill, Patrick Cahalan, Linda Cahalan, Jeffrey W. Speakman
  • Publication number: 20150038999
    Abstract: A method for stimulation of collateral development in ischemic cardiac regions comprises the fluid coupling of the left ventricle of the heart to the anterior interventricular vein to stimulate collateral development in ischemic regions. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes a control of the diastolic/systolic pressure in the venous system to be within about 20-50 mmHg. The fluid coupling of the left ventricle of the heart to the anterior interventricular vein includes inserting a transmyocardial conduit into the left ventricle and a tri-directional coupler attached to the anterior interventricular vein. An associated apparatus for stimulation of collateral development in ischemic cardiac regions via the fluid coupling of the left ventricle of the heart to the anterior interventricular vein is disclosed.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 5, 2015
    Inventors: Mark J Gartner, Patrick Cahalan, Linda Cahalan
  • Publication number: 20140288592
    Abstract: A variety of medical devices including staples sutures and dental floss with surface treatment on at least one tissue-facing surface to improve biologic function such as to control tissue adhesion are disclosed including heparin surface treatment which provides heparin present in an amount to yield heparin bioactivity of at least one of i) an ATIII binding of at least 2 pmol/cm2, and ii) a thrombin deactivation of at least 0.2 IU/cm2; an acrylic surface treatment for coupling thereto of a heparin surface treatment, a collagen surface treatment or both; and an amino-functional polysiloxane surface treatment for coupling thereto of a heparin surface treatment.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: ENSION, INC.
    Inventors: Ali HUSSAIN, Linda Cahalan, Greg Johnson, Mark Gartner, Patrick Cahalan, Brian J. Fill, Jeffrey W. Speakman
  • Publication number: 20140093912
    Abstract: A method of preparing a crosslinked, collagen-based medical scaffold is provided, comprising: (a) immersing a sample of fibrous and/or non-fibrous collagen in a buffered acidic, aqueous solution comprising an alcohol; (b) contacting the collagen in solution with a catalytic component comprising 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride for a time at least sufficient to effect reaction between amino and carboxyl groups present on the collagen and to yield crosslinked collagen that is resistant to pronase degradation; and (c) drying the crosslinked collagen to yield a porous, crosslinked collagen article wherein the porous, crosslinked collagen article demonstrates a pore size of 10-500 microns. Also provided are bioactive collagen medical scaffolds for wound care dressings, hernia repair prosthetics, and surgical incision closure members, prepared using the method above.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Inventors: Ali HUSSAIN, Patrick Cahalan, Linda Cahalan
  • Publication number: 20130343954
    Abstract: An integrated blood pump oxygenator comprises an an impeller housing supporting an impeller; with an annular hydrogel impeller packing material adjacent the bearings and around the shaft of the impeller. The oxygenator including a rollover outlet in the form of an annular chamber extending around a center pump housing member; and further including an annular chamber within an annular array of hollow fiber membranes in fluid communication with the annular chamber extending from the impeller around the center pump housing; wherein the annular chamber provides substantially perpendicular radial outward cross flow across the membranes.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: Mark J. Gartner, Brian J. Fill, Patrick Cahalan, Linda Cahalan
  • Publication number: 20130110137
    Abstract: A variety of polymeric synthetic hernia mesh prosthesis with surface treatment on at least one tissue-facing surface to control tissue adhesion are disclosed including heparin surface treatment which provides heparin present in an amount to yield heparin bioactivity of at least one of i) an ATIII binding of at least 2 pmol/cm2, and ii) a thrombin deactivation of at least 0.2 IU/cm2; an acrylic surface treatment for coupling thereto of a heparin surface treatment, a collagen surface treatment or both; and an amino-functional polysiloxane surface treatment for coupling thereto of a heparin surface treatment. The synthetic hernia mesh may be formed of monofilament or multifilament polypropylene or polyester, and may be formed as a multi-layer prosthesis with an outer layer formed of a polymeric synthetic hernia mesh with surface treatment to control tissue adhesion coupled to one or more polymeric synthetic hernia meshes without such surface treatments.
    Type: Application
    Filed: October 1, 2012
    Publication date: May 2, 2013
    Applicant: Ension, Inc.
    Inventors: Enrico Nicolo, Linda Cahalan, Greg Johnson, Mark Gartner, Patrick Cahalan, Brian J Fill, Ali HUSSAIN, Jeffrey W. Speakman
  • Patent number: 8343567
    Abstract: A method of treating the surface of a medical device with a biomolecule comprising the steps of: providing a polyolefin substrate forming a medical device; cleaning the polyolefin substrate; exposing the polyolefin substrate to a reactive gas containing acrylic acid and to plasma energy to yield a plasma-deposited polyacrylic acid coating on the polyolefin substrate; and attaching a biomolecule, such as heparin, to the polyolefin substrate following formation of the plasma-deposited polyacrylic acid coating on the polyolefin substrate.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 1, 2013
    Assignee: Ension, Inc.
    Inventors: Patrick Cahalan, Linda Cahalan, Greg Johnson, Mark Gartner