Patents by Inventor Patrick Campbell

Patrick Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11596916
    Abstract: In one embodiment, a method includes acquiring a three-dimensional printed template created using an additive manufacturing technique, infilling the template with an aerogel precursor solution, allowing formation of a sol-gel, and converting the sol-gel to an aerogel. In another embodiment, a product includes an aerogel having inner channels corresponding to outer walls of a three-dimensional printed template around which the aerogel was formed.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: March 7, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Swetha Chandrasekaran, Theodore F. Baumann, Juergen Biener, Patrick Campbell, James S. Oakdale, Marcus A. Worsley
  • Patent number: 11535521
    Abstract: A product includes an aerogel having a single bulk structure, the single bulk structure having at least one dimension greater than 10 millimeters. The single bulk structure includes a plurality of pores, where each pore has a largest diameter defined as a greatest distance between pore walls of the respective pore. In addition, an average of the largest diameters of a majority of the pores is within a specified range, and the plurality of pores are distributed substantially homogenously throughout the single bulk structure.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Colin Loeb, Patrick Campbell, Jennifer Marie Knipe, Michael Stadermann
  • Publication number: 20220313897
    Abstract: An assembly for retaining a pressure jacket (134) and a syringe (132) on a fluid injector, the assembly including a base plate (1902) comprising a body (1904); at least a first retaining arm (1910a) and a second retaining arm (1910b) operatively mounted on the body of the base plate, the first retaining arm having a first retaining surface at a distal end thereof and the second retaining arm having a second retaining surface at a distal end thereof, wherein the first retaining surface and the second retaining surface are configured for abutting a distal surface of at least one of the pressure jacket and the syringe; a linkage assembly operatively connected to at least one of the first retaining arm and the second retaining arm, wherein the linkage assembly is configured to move at least one of the first retaining arm and the second retaining arm between at least a first open position and a closed position.
    Type: Application
    Filed: September 9, 2020
    Publication date: October 6, 2022
    Inventors: MICHAEL SPOHN, KEVIN COWAN, ARTHUR UBER, III, PATRICK CAMPBELL, ANDREW OSAN, JOHN HAURY, JAMES DEDIG, ANDREW NAPLES, CHRISTOPHER SCUTT, MICHAEL SWANTNER, NATHANIEL PAYOR
  • Publication number: 20220311922
    Abstract: Systems and methods are provided that capture and process frames of frame data. An image sensor captures frames of frame data representative of light incident upon the image sensor using a rolling shutter and outputs the frames of frame data. The image sensor captures at least one of the frames over a frame capture interval and then waits over a blanking interval before capturing another frame. A buffer receives and stores the frames output by the image sensor. An image signal processor retrieves the frames from the buffer and processes the frames over successive frame processing intervals to generate a video having a time interval per frame greater than the frame capture interval. At least one of the successive frame processing intervals is greater than the frame capture interval and is less than or equal to a sum of the frame capture interval and the blanking interval.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 29, 2022
    Inventors: Paul Mobbs, Scott Patrick Campbell, David A. Newman, Kasturi Rangam, Sumit Chawla
  • Publication number: 20220274686
    Abstract: A propeller blade includes a first material and a second material. The first material includes fibers. The second material is different from the first material. The fibers are interspersed through the second material and the fibers are oriented in a same direction within the second material. The propeller blade is anisotropic and includes sections of the fibers.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Inventors: Scott Patrick Campbell, Leo Baldwin, Gary Fong
  • Publication number: 20220250954
    Abstract: The present disclosure relates to a method for making a carbon aerogel electrode material. The method involves initially making a wet organic sol-gel form. The sol-gel form is carbonized at a temperature of from about 900° C. to about 1000° C., for from about 2 hours to about 4 hours. The carbonized sol-gel is then activated under carbon dioxide flow, for from about 0.5 hour to about 1.5 hours, at from about 900° C. to about 1000° C.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Inventors: Patrick CAMPBELL, Maira Ceron HERNANDEZ, Steven HAWKS, Colin LOEB, Tuan Anh PHAM, Michael STADERMANN
  • Publication number: 20220239816
    Abstract: An integrated image sensor and lens assembly is disclosed that includes: an image sensor assembly defining an optical axis; a lens holder; and a lens barrel. The lens holder is coupled to the image sensor assembly and includes a tubular body portion terminating in a tapered surface that extends at an angle to the optical axis. The lens barrel is coupled to the lens holder by an adhesive that is applied between the lens holder and the lens barrel such that the adhesive extends in non-perpendicular relation to the optical axis.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Inventors: Scott Patrick Campbell, Thomas Czepowicz
  • Patent number: 11377498
    Abstract: Methods and devices for treating a luminal pathology affecting an anatomical lumen of a patient comprising forming, in situ, a continuous cohesive layer of covalently-crosslinked hydrogel in a luminal wall of the anatomical lumen.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: July 5, 2022
    Assignee: Incept, LLC
    Inventors: Amarpreet S. Sawhney, Farhad Khosravi, Patrick Campbell
  • Publication number: 20220209277
    Abstract: The present disclosure relates to an electrical energy storage apparatus. The apparatus has an interpenetrating, three dimensional periodic structure formed from an ionically conductive solid electrolyte material having a plurality of interpenetrating, non-planar channels. The interpenetrating, non-planar channels are made up of a first plurality of channels filled with an anode material, a second plurality of channels adjacent the first plurality of channels and interpenetrating with the first plurality of channels, and filled with a cathode material, and a third plurality of channels adjacent to, and interpenetrating with, one of the first and second pluralities of channels, and filled with a material to form a separator. The first, second and third channels form a spatially dense, three dimensional structure. A first non-flat current collector layer is incorporated which is in communication with the first plurality of channels, and which forms a first electrode.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Eric DUOSS, Juergen BIENER, Patrick CAMPBELL, Julie A. JACKSON, Geoffrey M. OXBERRY, Christopher SPADACCINI, Michael STADERMANN, Cheng ZHU, Bradley TREMBACKI, Jayathi MURTHY, Matthew MERRILL
  • Patent number: 11375139
    Abstract: Systems and methods are disclosed that capture and compress frames of pixel data. In an implementation, an image sensor chip is configured to convert light into pixel data and generate compressed pixel data at a variable compression rate including applying a transform to pixel data associated with a pixel category from a plurality of pixel categories. The variable compression rate is within an available bandwidth of an output bus configured to output the compressed pixel data.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: June 28, 2022
    Assignee: GoPro, Inc.
    Inventors: Scott Patrick Campbell, David A. Newman, Brian G. Schunck
  • Patent number: 11375173
    Abstract: An image capture device having multiple image sensors having overlapping fields of view that aligns the image sensors based on images captured by image sensors. A pixel shift is identified between the images. Based on the identified pixel shift, a calibration is applied to one or more of the image sensors. To determine the pixel shift, a processor applies correlation methods including edge matching. Calibrating the image sensors may include adjusting a read window on an image sensor. The pixel shift can also be used to determine a time lag, which can be used to synchronize subsequent image captures.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: June 28, 2022
    Assignee: GoPro, Inc.
    Inventors: Timothy Macmillan, Scott Patrick Campbell, David A. Newman, Yajie Sun
  • Patent number: 11368623
    Abstract: Systems and methods are provided that capture and process frames of frame data. An image sensor captures frames of frame data representative of light incident upon the image sensor using a rolling shutter and outputs the frames of frame data. The image sensor captures at least one of the frames over a frame capture interval and then waits over a blanking interval before capturing another frame. A buffer receives and stores the frames output by the image sensor. An image signal processor retrieves the frames from the buffer and processes the frames over successive frame processing intervals to generate a video having a time interval per frame greater than the frame capture interval. At least one of the successive frame processing intervals is greater than the frame capture interval and is less than or equal to a sum of the frame capture interval and the blanking interval.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: June 21, 2022
    Assignee: GoPro, Inc.
    Inventors: Paul Mobbs, Scott Patrick Campbell, David A. Newman, Kasturi Rangam, Sumit Chawla
  • Patent number: 11358883
    Abstract: The present disclosure relates to a flow through electrode, capacitive deionization (FTE-CDI) system which is able to adsorb nitrates from water being treated using the system. The system makes use of a pair of electrodes arranged generally parallel to one another, with a water permeable dielectric sandwiched between the electrodes. The electrodes receive a direct current voltage from an electrical circuit. At least one of the electrodes is formed from a carbon material having a hierarchical pore size distribution which includes a first plurality of pores having a width of no more than about 1 nm, and a second plurality of micro-sized pores. The micron-sized pores enable a flow of water to be pushed through the electrodes while the first plurality of pores form adsorption sites for nitrate molecules carried in the water flowing through the electrodes.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: June 14, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Maira Ceron Hernandez, Steven Hawks, Colin Loeb, Tuan Anh Pham, Michael Stadermann
  • Publication number: 20220178036
    Abstract: A thermo-electrochemical reactive capture apparatus includes an anode and a cathode, wherein the anode includes a first catalyst, wherein the cathode includes a second catalyst, a porous ceramic support positioned between the anode and the cathode, an electrolyte mixture in pores of the ceramic support, and a steam flow system on an outer side of the cathode. The outer side of the cathode is opposite an inner side of the cathode and the inner side of the cathode is adjacent to the ceramic support. In addition, the electrolyte mixture is configured to be molten at a temperature below about 600° C.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Inventors: Patrick Campbell, Maira Ceron Hernandez, Jeremy Taylor Feaster, Sneha Anil Akhade
  • Patent number: 11352125
    Abstract: A variable pitch propeller is designed to adjust the pitch of the propeller blade during flight to maximize the propeller efficiency. The propeller blade may comprise airfoil cross-sections. Each cross-section may be composed of different materials at the leading edge and trailing edge. In various embodiments, these materials are selected and oriented to achieve the necessary elastic moduli of the leading and trailing edge for the airfoil cross-section. During liftoff, the airfoil at the blade tip possesses a high blade pitch (e.g. 20 degrees), thereby increasing the generated lift on the propeller blades. During flight or hover conditions when maximal lift is no longer required, the trailing edge of the airfoil displaces upward and reduces the blade pitch to minimize the drag forces on the blade tip.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: June 7, 2022
    Assignee: GoPro, Inc.
    Inventors: Scott Patrick Campbell, Leo Baldwin, Gary Fong
  • Patent number: 11336807
    Abstract: An integrated image sensor and lens assembly comprises an image sensor substrate, an image sensor assembly mounted on the image sensor substrate and housing an image sensor, the image sensor assembly having one or more side walls, a lens barrel including one or more lenses, and an adhesive formed between a region of the lens barrel and the one or more side walls, the region being directly adhered to the one or more side walls via the adhesive.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: May 17, 2022
    Assignee: GoPro, Inc.
    Inventors: Scott Patrick Campbell, Thomas Czepowicz
  • Publication number: 20220125954
    Abstract: Implantable materials may be used in an iatrogenic site. Applications include radioopaque materials for fiducial marking.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Patrick Campbell, Amarpreet S. Sawhney
  • Patent number: 11309574
    Abstract: The present disclosure relates to an electrical energy storage apparatus which forms an interpenetrating, three dimensional structure. The structure may have a first non-planar channel filled with an anode material to form an anode, and a second non-planar channel adjacent the first non-planar channel filled with a cathode material to form a cathode. A third non-planar channel may be formed adjacent the first and second non-planar channels and filled with an electrolyte. The first, second and third channels are formed so as to be interpenetrating and form a spatially dense, three dimensional structure. A first current collector is in communication with the first non-planar channel and forms a first electrode, while a second current collector is in communication with the second non-planar channel and forms a second electrode. A separator layers separates the current collectors.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: April 19, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric Duoss, Juergen Biener, Patrick Campbell, Julie A. Jackson, Geoffrey M. Oxberry, Christopher Spadaccini, Michael Stadermann, Cheng Zhu, Bradley Trembacki, Jayathi Murthy, Matthew Merrill
  • Patent number: 11285704
    Abstract: According to one embodiment, a product includes a composite film comprising a polymer layer directly adjacent a graphene layer. According to another embodiment, a process includes layering a graphene layer onto a polymer layer to form a composite film.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 29, 2022
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Michael Stadermann, Patrick Campbell, Philip E. Miller, Chantel Aracne-Ruddle, Sung Ho Kim, Francisco J. Espinosa-Loza
  • Publication number: 20220086369
    Abstract: A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the input image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.
    Type: Application
    Filed: November 29, 2021
    Publication date: March 17, 2022
    Inventors: Nicholas D. Woodman, Sumit Chawla, Loic Segapelli, Scott Patrick Campbell