Patents by Inventor Patrick Chow

Patrick Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10350066
    Abstract: Devices, systems and methods are described herein to provide improved steerability for delivering a prosthesis to a body location, for example, for delivering a replacement mitral valve to a native mitral valve location. A delivery component can have a plurality of slots that provide for desired bending of the delivery component, particularly compound bending of the delivery component that can facilitate steering of the delivery component in three dimensions.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: July 16, 2019
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Alexander H. Cooper, David Robert Landon, Julio Cesar Sanchez, Glen T. Rabito, J. Brent Ratz, Arshad Quadri, Kevin M. Stewart, Patrick Chow
  • Publication number: 20190032842
    Abstract: A protractible and retractable mast system for an autonomous mobile robot includes an elongate flexible member including a first lateral end and a second lateral end, and a fastener having a first portion extending along a length of the first lateral end and a second portion extending along a length of the second lateral end. The flexible member is configured to be at least partially coiled within a body of the robot, and a portion of the flexible member is vertically movable away from the body when the flexible member is being uncoiled. The fastener is configured to connect the first lateral end to the second lateral end when the flexible member is being uncoiled, and disconnect the first lateral end from the second lateral end when the flexible member is being coiled.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 31, 2019
    Inventors: Patrick Chow, Nikolai Romanov
  • Publication number: 20190008640
    Abstract: Devices, systems and methods are described herein to provide improved steerability for delivering a prosthesis to a body location, for example, for delivering a replacement mitral valve to a native mitral valve location. The steerable delivery system can contain a steerable rail configured for multi-plane bending to direct a distal end of the delivery system.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Inventors: Alexander H. Cooper, David Robert Landon, Kevin M. Stewart, Garrett Dallas Johnson, Glen T. Rabito, Tarannum Ishaq Gutierrez, Hiroshi Okabe, Ramon Aguilar, JR., Jesse Robert Edwards, Taylor Jacob Scheinblum, Patrick Chow, Julio Cesar Sanchez, Hieu Minh Luong
  • Patent number: 10100968
    Abstract: A protractible and retractable mast system for an autonomous mobile robot includes an elongate flexible member including a first lateral end and a second lateral end, and a fastener having a first portion extending along a length of the first lateral end and a second portion extending along a length of the second lateral end. The flexible member is configured to be at least partially coiled within a body of the robot, and a portion of the flexible member is vertically movable away from the body when the flexible member is being uncoiled. The fastener is configured to connect the first lateral end to the second lateral end when the flexible member is being uncoiled, and disconnect the first lateral end from the second lateral end when the flexible member is being coiled.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: October 16, 2018
    Assignee: iRobot Corporation
    Inventors: Patrick Chow, Nikolai Romanov
  • Publication number: 20170056171
    Abstract: Devices, systems and methods are described herein to provide improved steerability for delivering a prosthesis to a body location, for example, for delivering a replacement mitral valve to a native mitral valve location. A delivery component can have a plurality of slots that provide for desired bending of the delivery component, particularly compound bending of the delivery component that can facilitate steering of the delivery component in three dimensions.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Applicant: Edwards Lifesciences CardiAQ LLC
    Inventors: Alexander H. Cooper, David Robert Landon, Julio Cesar Sanchez, Glen T. Rabito, J. Brent Ratz, Arshad Quadri, Kevin M. Stewart, Patrick Chow
  • Patent number: 9259167
    Abstract: This invention discloses a system and method for extracting VF signal in ECG recorded during uninterrupted CPR. The method and system applies an adaptive algorithm incorporating the EMD and least mean square (LMS) filtering to effectively model the CPR artifacts such as chest compression signals. Thus, A VF signal in ECG recorded during uninterrupted CPR can be extracted without deteriorating the reliability of the waveform parameter (i.e. AMSA) of shockability. The present invention enables uninterrupted CPR performed during recording ECG for accessing the shockability, so that an increase the probability of successful resuscitation is achieved.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 16, 2016
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Men-Tzung Lo, Wan-Hsin Hsieh, Chen Lin, Yi-Chung Chang, Hsiang-Chih Chang, Lian-Yu Lin, Patrick Chow-In Ko, Wen-Chu Chiang, Matthew Huei-Ming Ma, Kun Hu
  • Publication number: 20160000346
    Abstract: This invention discloses a system and method for extracting VF signal in ECG recorded during uninterrupted CPR. The method and system applies an adaptive algorithm incorporating the EMD and least mean square (LMS) filtering to effectively model the CPR artifacts such as chest compression signals. Thus, A VF signal in ECG recorded during uninterrupted CPR can be extracted without deteriorating the reliability of the waveform parameter (i.e. AMSA) of shockability. The present invention enables uninterrupted CPR performed during recording ECG for accessing the shockability, so that an increase the probability of successful resuscitation is achieved.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 7, 2016
    Inventors: Men-Tzung LO, Wan-Hsin HSIEH, Chen LIN, Yi-Chung CHANG, Hsiang-Chih CHANG, Lian-Yu LIN, Patrick Chow-In KO, Wen-Chu CHIANG, Matthew Huei-Ming MA, Kun HU
  • Patent number: 8380305
    Abstract: A computer-assisted method for quantitative characterization and treatment of ventricular fibrillation includes acquiring a time series of a ventricular fibrillation (VF) signal using a probe from a patient experiencing VF, subtracting the mean from the time series of the VF signal, calculating a cumulative VF signal after the mean is subtracted from the time series of the VF signal, segmenting the cumulative VF signal by a plurality of sampling boxes, calculating the root-mean-square of the cumulative VF signal as a function of the sampling box size , extracting an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size, applying electrical defibrillation to the patient if the exponent is below a predetermined value, and applying cardiopulmonary resuscitation (CPR) to the patient if the exponent is above a predetermined value.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: February 19, 2013
    Assignee: DynaDx Corporation
    Inventors: Men-Tzung Lo, Lian-Yu Lin, Patrick Chow-In Ko, Chen Lin, Matthew Huei-Ming Ma
  • Publication number: 20120004693
    Abstract: A computer-assisted method for quantitative characterization and treatment of ventricular fibrillation includes acquiring a time series of a ventricular fibrillation (VF) signal using a probe from a patient experiencing VF, subtracting the mean from the time series of the VF signal, calculating a cumulative VF signal after the mean is subtracted from the time series of the VF signal, segmenting the cumulative VF signal by a plurality of sampling boxes, calculating the root-mean-square of the cumulative VF signal as a function of the sampling box size , extracting an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size, applying electrical defibrillation to the patient if the exponent is below a predetermined value, and applying cardiopulmonary resuscitation (CPR) to the patient if the exponent is above a predetermined value.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Inventors: Men-Tzung Lo, Lian-Yu Lin, Patrick Chow-In Ko, Chen Lin, Matthew Huei-Ming Ma