Patents by Inventor Patrick Christian SCHAEFER

Patrick Christian SCHAEFER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11713030
    Abstract: A control apparatus/method for operating an electromechanical brake booster of a vehicle braking system, including: applying control to an electromechanical brake booster motor in consideration at least of a braking definition signal regarding a braking input of a driver and/or automatic speed control system of the vehicle (ACC); specifying, in consideration at least of the braking definition signal, a target motor force of the electromechanical brake booster motor or a target brake application force of the electromechanical brake booster into a brake master cylinder, downstream from the electromechanical brake booster, of the braking system; and applying control to the electromechanical brake booster motor in consideration of a force difference between the specified target motor force and an estimated/measured actual motor force of the motor, or between the specified target brake application force and an estimated/measured actual brake application force of the electromechanical brake booster into the downstr
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 1, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Herbert Vollert, Christian Binder, Manfred Gerdes, Oliver Fuchs, Patrick Christian Schaefer
  • Patent number: 11358575
    Abstract: A control device and a method for operating an electromechanical brake booster of a brake system configured to execute anti-lock control actions, including the steps: determining a setpoint variable regarding a setpoint brake pressure to be produced by the electromechanical brake booster, in view of at least a differential travel; and controlling the electromechanical brake booster in view of the determined setpoint variable; at least during an anti-lock control action carried out in the brake system, it being ascertained if the differential travel lies outside of a specified normal value range, and in some instances, the additional steps being executed: determining a correction variable for the setpoint variable in view of at least a difference between the determined setpoint variable and an actual variable regarding an actual pressure present in at least part of the volume of the brake system, and controlling the electromechanical brake booster in additional view of the determined correction variable.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: June 14, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Manfred Gerdes, Patrick Christian Schaefer
  • Publication number: 20210129819
    Abstract: A control apparatus/method for operating an electromechanical brake booster of a vehicle braking system, including: applying control to an electromechanical brake booster motor in consideration at least of a braking definition signal regarding a braking input of a driver and/or automatic speed control system of the vehicle (ACC); specifying, in consideration at least of the braking definition signal, a target motor force of the electromechanical brake booster motor or a target brake application force of the electromechanical brake booster into a brake master cylinder, downstream from the electromechanical brake booster, of the braking system; and applying control to the electromechanical brake booster motor in consideration of a force difference between the specified target motor force and an estimated/measured actual motor force of the motor, or between the specified target brake application force and an estimated/measured actual brake application force of the electromechanical brake booster into the downstr
    Type: Application
    Filed: November 30, 2017
    Publication date: May 6, 2021
    Inventors: Herbert Vollert, Christian Binder, Manfred Gerdes, Oliver Fuchs, Patrick Christian Schaefer
  • Publication number: 20210031740
    Abstract: System (195) and method (300) for providing an extra torque from a motor (110) to a brake pedal (115). The system comprises a brake pedal (115) having an input rod; a motor (110); a sensor (125); and an electronic controller (130) configured to receive a velocity of the input rod of the brake pedal (115) from the sensor (125), determine a torque ratio based on the velocity, determine a differential stroke of the brake pedal (115), determine a torque offset based on the differential stroke, determine an extra torque based on the torque ratio and the torque offset, and control the motor (110) to apply the extra torque to the brake pedal (115).
    Type: Application
    Filed: January 22, 2019
    Publication date: February 4, 2021
    Inventors: Patrick Christian Schaefer, James Zhu, Hind Harkati, Benoit Herve, Karsten Bieltz
  • Patent number: 10661765
    Abstract: A control device for a controllable brake booster of a braking system is configured to: establish a setpoint variable regarding a setpoint operation to be carried out with the aid of the controllable brake booster, under consideration of a provided specified variable regarding a setpoint pressure to be set in a partial volume of the braking system; establish a setpoint difference of the setpoint variable, under consideration of the specified variable and an actual variable regarding an actual pressure present in a subarea of the braking system, to establish a corrected setpoint variable taking the established setpoint difference into consideration; and output a control signal which corresponds to the established corrected setpoint variable to the controllable brake booster and/or to the power supply component of the controllable brake booster.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: May 26, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Michael Butz, Manfred Gerdes, Patrick Christian Schaefer
  • Publication number: 20190193699
    Abstract: A control device and a method for operating an electromechanical brake booster of a brake system configured to execute anti-lock control actions, including the steps: determining a setpoint variable regarding a setpoint brake pressure to be produced by the electromechanical brake booster, in view of at least a differential travel; and controlling the electromechanical brake booster in view of the determined setpoint variable; at least during an anti-lock control action carried out in the brake system, it being ascertained if the differential travel lies outside of a specified normal value range, and in some instances, the additional steps being executed: determining a correction variable for the setpoint variable in view of at least a difference between the determined setpoint variable and an actual variable regarding an actual pressure present in at least part of the volume of the brake system, and controlling the electromechanical brake booster in additional view of the determined correction variable.
    Type: Application
    Filed: June 8, 2017
    Publication date: June 27, 2019
    Inventors: Manfred Gerdes, Patrick Christian Schaefer
  • Patent number: 10308231
    Abstract: A method for controlling a brake booster in a hydraulic brake system, in which the smallest partial pressure target value of at least three partial pressure target values is ascertained, and is then defined as the target pressure value and is then set using a brake booster.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: June 4, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Butz, Manfred Gerdes, Patrick Christian Schaefer, Herbert Vollert
  • Patent number: 10077037
    Abstract: A hydraulic control device for at least one hydraulic aggregate of a brake system, and a brake booster control device, interacting therewith, for an electromechanical brake booster of the brake system. The hydraulic control device includes a first control electronics by which at least one motor target quantity that is to be realized by a motor of the electromechanical brake booster can be determined, taking into account a provided brake actuating strength quantity relating to a current actuation of a brake actuating element, and by which a specification signal corresponding to the at least one determined motor target quantity can be outputted to the brake booster control device. The brake booster control device has a second control electronics that, at least in a normal mode, outputs the control signal to the motor of the electromechanical brake booster, taking into account the specification signal outputted by the hydraulic control device.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 18, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Bertram Foitzik, Patrick Christian Schaefer
  • Publication number: 20170197601
    Abstract: A hydraulic assemblage for a braking system of a vehicle, including a brake master cylinder and at least one valve, the brake master cylinder being disposed in and/or on a first hydraulic assemblage sub-block, and the at least one valve being disposed in and/or on a second hydraulic assemblage sub-block; the first hydraulic assemblage sub-block and the second hydraulic assemblage sub-block being joined to one another via an interlayer that is shaped at least in part from at least one airtight material having vibration-damping properties; and at least one first conduit portion of the first hydraulic assemblage sub-block being connected, via at least one hydraulic connecting structure extending through the interlayer, to at least one second conduit portion of the second hydraulic assemblage sub-block. A braking system for a vehicle, having a hydraulic assemblage and a method for manufacturing a hydraulic assemblage for a braking system are also described.
    Type: Application
    Filed: April 23, 2015
    Publication date: July 13, 2017
    Inventor: Patrick Christian SCHAEFER
  • Publication number: 20170158182
    Abstract: A hydraulic control device for at least one hydraulic aggregate of a brake system, and a brake booster control device, interacting therewith, for an electromechanical brake booster of the brake system. The hydraulic control device includes a first control electronics by which at least one motor target quantity that is to be realized by a motor of the electromechanical brake booster can be determined, taking into account a provided brake actuating strength quantity relating to a current actuation of a brake actuating element, and by which a specification signal corresponding to the at least one determined motor target quantity can be outputted to the brake booster control device. The brake booster control device has a second control electronics that, at least in a normal mode, outputs the control signal to the motor of the electromechanical brake booster, taking into account the specification signal outputted by the hydraulic control device.
    Type: Application
    Filed: April 7, 2015
    Publication date: June 8, 2017
    Inventors: Bertram Foitzik, Patrick Christian Schaefer
  • Publication number: 20160200306
    Abstract: A method for controlling a brake booster in a hydraulic brake system, in which the smallest partial pressure target value of at least three partial pressure target values is ascertained, and is then defined as the target pressure value and is then set using a brake booster.
    Type: Application
    Filed: July 24, 2014
    Publication date: July 14, 2016
    Inventors: Michael Butz, Manfred Gerdes, Patrick Christian Schaefer, Herbert Vollert
  • Publication number: 20150032352
    Abstract: A control device for a controllable brake booster of a braking system is configured to: establish a setpoint variable regarding a setpoint operation to be carried out with the aid of the controllable brake booster, under consideration of a provided specified variable regarding a setpoint pressure to be set in a partial volume of the braking system; establish a setpoint difference of the setpoint variable, under consideration of the specified variable and an actual variable regarding an actual pressure present in a subarea of the braking system, to establish a corrected setpoint variable taking the established setpoint difference into consideration; and output a control signal which corresponds to the established corrected setpoint variable to the controllable brake booster and/or to the power supply component of the controllable brake booster.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 29, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Michael BUTZ, Manfred GERDES, Patrick Christian SCHAEFER