Patents by Inventor Patrick D. Couture

Patrick D. Couture has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389828
    Abstract: According to an aspect, a gas turbine engine includes a turbine section with a turbine case and a plurality of turbine blades within the turbine case. The gas turbine engine also includes an active clearance control system with an active clearance control cooling air supply, a valve pneumatically coupled to the active clearance control cooling air supply, and a controller. The controller is configured to determine an active cooling control schedule adjustment based on a condition of the gas turbine engine, operate the active clearance control system according to an active cooling control schedule as modified by the active cooling control schedule adjustment, apply a decay function to the active cooling control schedule adjustment to reduce an effect on the active cooling control schedule adjustment, and resume operating the active clearance control system according to the active cooling control schedule based on an active cooling control condition being met.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 8, 2022
    Inventors: Patrick D. Couture, Norman Cleesattel
  • Patent number: 11473510
    Abstract: A method of operating a gas turbine engine includes commanding an acceleration of the gas turbine engine and moving a variable pitch high pressure compressor vane toward an open position thereby reducing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal. An active clearance control system of a gas turbine engine includes an engine control system configured to command an acceleration of the gas turbine engine and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal located radially outboard of the high pressure turbine rotor.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 18, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Joseph Kehoe, Richard P. Meisner, Manuj Dhingra, Patrick D. Couture, Matthew R. Feulner, Brenda J. Lisitano, Christopher L. Ho
  • Patent number: 11111809
    Abstract: A clearance control system for a gas turbine engine may comprise a rotor blade, an outer structure disposed radially outward from the rotor blade, and a heating element configured to cause the outer structure to be heated in response to electric current being supplied to the heating element, wherein a gap between the rotor blade and the outer structure is at least one of increased, decreased, and maintained in response to the outer structure being heated.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: September 7, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Neil Terwilliger, Christopher J. Hanlon, Patrick D Couture, Coy Bruce Wood
  • Publication number: 20200332726
    Abstract: A method of operating a gas turbine engine includes commanding an acceleration of the gas turbine engine and moving a variable pitch high pressure compressor vane toward an open position thereby reducing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal. An active clearance control system of a gas turbine engine includes an engine control system configured to command an acceleration of the gas turbine engine and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal located radially outboard of the high pressure turbine rotor.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Inventors: Joseph Kehoe, Richard P. Meisner, Manuj Dhingra, Patrick D. Couture, Matthew R. Feulner, Brenda J. Lisitano, Christopher L. Ho
  • Patent number: 10801331
    Abstract: A gas turbine engine blade includes a blade portion having a leading edge and a trailing edge. A first surface connects the leading edge to the trailing edge and a second surface connects the leading edge to the trailing edge. A tip section is located at a first end of the blade portion and includes a pocket protruding into the tip section from an outermost end of the tip section. The pocket has a first side wall adjacent the first surface and a second side wall adjacent the second surface. At least one of the first side wall and the second side wall have a curve distinct from a curve of the corresponding adjacent surface.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: October 13, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Patrick D. Couture, Scott D. Lewis, Kyle C. Lana
  • Patent number: 10702964
    Abstract: A blade outer air seal for a gas turbine engine having a surface that is eccentric with respect to the engine rotation centerline, and a method for creating same, are disclosed. Also, a method for grinding a work piece having nominal curvature defined by a work piece curvature centerline is disclosed, comprising the steps of: a) determining a desired surface profile for the work piece; b) providing a rotating grinding surface having a grinding rotation centerline; c) offsetting the grinding rotation centerline from the work piece curvature centerline; and d) applying the rotating grinding surface to the work piece while rotating the rotating grinding surface about the grinding rotation centerline to create the desired surface profile.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 7, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Paul M. Lutjen, Patrick D. Couture
  • Publication number: 20190345835
    Abstract: A clearance control system for a gas turbine engine may comprise a rotor blade, an outer structure disposed radially outward from the rotor blade, and a heating element configured to cause the outer structure to be heated in response to electric current being supplied to the heating element, wherein a gap between the rotor blade and the outer structure is at least one of increased, decreased, and maintained in response to the outer structure being heated.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 14, 2019
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Neil Terwilliger, Christopher J. Hanlon, Patrick D Couture, Coy Bruce Wood
  • Patent number: 10415421
    Abstract: Disclosed is an active tip clearance control system (ATCCS) for a gas turbine engine, having an electronically controlled regulating valve directing cooling airflow to a turbine case, and an engine electronic control (EEC), controlling the electronically controlled regulating valve, wherein the EEC controls the electronically controlled regulating valve to regulate cooling airflow according to a selected target blade tip clearance schedule, and wherein the selected target blade tip clearance schedule is selected before or after an engine cycle, from of a plurality of target blade tip clearance schedules, each correlating to one of a plurality of thrust rating applications for the engine.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: September 17, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Jason Arnold, Graham Ryan Philbrick, Patrick D. Couture
  • Patent number: 10344614
    Abstract: Aspects of the disclosure are directed to systems and methods for receiving operating state parameters associated with an operative state of an aircraft, determining a clearance value between a first structure of the engine and a second structure of the engine, where the clearance value is determined based on the operating state parameters and a passive clearance model that includes a specification of an uncertainty in the clearance value, determining that the clearance value deviates from a clearance target in an amount that is greater than a threshold, and engaging an active clearance control (ACC) mechanism based on the deviation.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Graham R. Philbrick, Patrick D. Couture, Jason Arnold
  • Publication number: 20180223684
    Abstract: Disclosed is an active tip clearance control system (ATCCS) for a gas turbine engine, having an electronically controlled regulating valve directing cooling airflow to a turbine case, and an engine electronic control (EEC), controlling the electronically controlled regulating valve, wherein the EEC controls the electronically controlled regulating valve to regulate cooling airflow according to a selected target blade tip clearance schedule, and wherein the selected target blade tip clearance schedule is selected before or after an engine cycle, from of a plurality of target blade tip clearance schedules, each correlating to one of a plurality of thrust rating applications for the engine.
    Type: Application
    Filed: February 6, 2017
    Publication date: August 9, 2018
    Inventors: Jason Arnold, Graham Ryan Philbrick, Patrick D. Couture
  • Publication number: 20180085880
    Abstract: A blade outer air seal for a gas turbine engine having a surface that is eccentric with respect to the engine rotation centerline, and a method for creating same, are disclosed. Also, a method for grinding a work piece having nominal curvature defined by a work piece curvature centerline is disclosed, comprising the steps of: a) determining a desired surface profile for the work piece; b) providing a rotating grinding surface having a grinding rotation centerline; c) offsetting the grinding rotation centerline from the work piece curvature centerline; and d) applying the rotating grinding surface to the work piece while rotating the rotating grinding surface about the grinding rotation centerline to create the desired surface profile.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Inventors: Paul M. Lutjen, Patrick D. Couture
  • Publication number: 20170350255
    Abstract: A gas turbine engine blade includes a blade portion having a leading edge and a trailing edge. A first surface connects the leading edge to the trailing edge and a second surface connects the leading edge to the trailing edge. A tip section is located at a first end of the blade portion and includes a pocket protruding into the tip section from an outermost end of the tip section. The pocket has a first side wall adjacent the first surface and a second side wall adjacent the second surface. At least one of the first side wall and the second side wall have a curve distinct from a curve of the corresponding adjacent surface.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 7, 2017
    Inventors: Patrick D. Couture, Scott D. Lewis, Kyle C. Lana
  • Patent number: 9833869
    Abstract: A blade outer air seal for a gas turbine engine having a surface that is eccentric with respect to the engine rotation centerline, and a method for creating same, are disclosed. Also, a method for grinding a work piece having nominal curvature defined by a work piece curvature centerline is disclosed, comprising the steps of: a) determining a desired surface profile for the work piece; b) providing a rotating grinding surface having a grinding rotation centerline; c) offsetting the grinding rotation centerline from the work piece curvature centerline; and d) applying the rotating grinding surface to the work piece while rotating the rotating grinding surface about the grinding rotation centerline to create the desired surface profile.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: December 5, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Paul M. Lutjen, Patrick D. Couture
  • Patent number: 9810091
    Abstract: A method is provided for calibrating an active clearance control system for a plurality of turbine engines. During this method, a squeeze test is performed between a tip of a rotor blade and a shroud. Results of the squeeze test are applied to adjust a gap between the tip and the shroud. The performance of the squeeze test and the application of the results may be individually performed for each of the turbine engines.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: November 7, 2017
    Assignee: United Technologies Corporation
    Inventors: Kevin Zacchera, Patrick D. Couture
  • Publication number: 20170292399
    Abstract: Aspects of the disclosure are directed to systems and methods for receiving operating state parameters associated with an operative state of an aircraft, determining a clearance value between a first structure of the engine and a second structure of the engine, where the clearance value is determined based on the operating state parameters and a passive clearance model that includes a specification of an uncertainty in the clearance value, determining that the clearance value deviates from a clearance target in an amount that is greater than a threshold, and engaging an active clearance control (ACC) mechanism based on the deviation.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 12, 2017
    Inventors: Graham R. Philbrick, Patrick D. Couture, Jason Arnold
  • Patent number: 9719364
    Abstract: A process for machining a turbine engine blade outer air seal in situ, the process comprising replacing a blade with a cutting tool assembly proximate a blade outer air seal, wherein the blade outer air seal is assembled in a gas turbine engine case. The process includes coupling a blower to the blade outer air seal. The blade outer air seal comprises at least one flow path. The process includes creating a purge air stream with the blower through the blade outer air seal. The process includes machining the blade outer air seal, wherein particulate is formed from the machining. The process includes preventing the particulate from blocking the at least one flow path of the blade outer air seal.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: August 1, 2017
    Assignee: United Technologies Corporation
    Inventors: Graham Ryan Philbrick, Patrick D Couture
  • Publication number: 20160222811
    Abstract: A process for machining a turbine engine blade outer air seal in situ, the process comprising replacing a blade with a cutting tool assembly proximate a blade outer air seal, wherein the blade outer air seal is assembled in a gas turbine engine case. The process includes coupling a blower to the blade outer air seal. The blade outer air seal comprises at least one flow path. The process includes creating a purge air stream with the blower through the blade outer air seal. The process includes machining the blade outer air seal, wherein particulate is formed from the machining. The process includes preventing the particulate from blocking the at least one flow path of the blade outer air seal.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 4, 2016
    Inventors: Graham Ryan Philbrick, Patrick D. Couture
  • Publication number: 20160047269
    Abstract: A method is provided for calibrating an active clearance control system for a plurality of turbine engines. During this method, a squeeze test is performed between a tip of a rotor blade and a shroud. Results of the squeeze test are applied to adjust a gap between the tip and the shroud. The performance of the squeeze test and the application of the results may be individually performed for each of the turbine engines.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 18, 2016
    Inventors: Kevin Zacchera, Patrick D. Couture
  • Publication number: 20140227087
    Abstract: A blade outer air seal for a gas turbine engine having a surface that is eccentric with respect to the engine rotation centerline, and a method for creating same, are disclosed. Also, a method for grinding a work piece having nominal curvature defined by a work piece curvature centerline is disclosed, comprising the steps of: a) determining a desired surface profile for the work piece; b) providing a rotating grinding surface having a grinding rotation centerline; c) offsetting the grinding rotation centerline from the work piece curvature centerline; and d) applying the rotating grinding surface to the work piece while rotating the rotating grinding surface about the grinding rotation centerline to create the desired surface profile.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 14, 2014
    Applicant: United Technologies Corporation
    Inventors: Paul M. Lutjen, Patrick D. Couture