Patents by Inventor Patrick D. Tepesch
Patrick D. Tepesch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8999483Abstract: Disclosed is a honeycomb catalyst support structure comprising a honeycomb body and an outer layer or skin formed of a cement comprising an amorphous glass powder with a multimodal particle size distribution applied to an exterior surface of the honeycomb body. The multimodal particle size distribution is achieved through the use of a first glass powder having a first median particle size and at least a second glass powder having a second median particle size. In some embodiments, the first and second glass powders are the same amorphous glass consisting of fused silica. The cement may further include a fine-grained, sub-micron sized silica in the form of colloidal silica. The cement exhibits a coefficient of thermal expansion less than 15×10?7/° C., and preferably about 5×10?7/° C. after drying.Type: GrantFiled: November 22, 2011Date of Patent: April 7, 2015Assignee: Corning IncorporatedInventors: Thomas R. Chapman, Linda J. Ingersoll, Patrick D. Tepesch
-
Publication number: 20120301664Abstract: Disclosed is a honeycomb catalyst support structure comprising a honeycomb body and an outer layer or skin formed of a cement comprising an amorphous glass powder with a multimodal particle size distribution applied to an exterior surface of the honeycomb body. The multimodal particle size distribution is achieved through the use of a first glass powder having a first median particle size and at least a second glass powder having a second median particle size. In some embodiments, the first and second glass powders are the same amorphous glass consisting of fused silica. The cement may further include a fine-grained, sub-micron sized silica in the form of colloidal silica. The cement exhibits a coefficient of thermal expansion less than 15×10?7/° C., and preferably about 5×10?7/° C. after drying.Type: ApplicationFiled: November 22, 2011Publication date: November 29, 2012Inventors: Thomas R. Chapman, Linda J. Ingersoll, Patrick D. Tepesch
-
Patent number: 7842516Abstract: Labels, methods of making labels and methods of using labels are disclosed. The labels can be manufactured using fiber drawing techniques or by shutter masking. The labels can be used for detecting the presence of an analyte in a sample and for detecting interactions of biomolecules.Type: GrantFiled: June 30, 2006Date of Patent: November 30, 2010Assignee: Corning IncorporatedInventors: Matthew J. Dejneka, Joydeep Lahiri, Uwe R. Muller, Cameron W. Tanner, Patrick D. Tepesch
-
Publication number: 20100252497Abstract: Disclosed are compositions for applying to honeycomb substrates. The compositions comprise an inorganic powder batch composition; a binder; and a liquid vehicle. The inorganic powder batch composition comprises a ceramic forming glass powder. The compositions are well suited for use as plugging compositions for forming ceramic diesel particulate wall flow filters. Also disclosed herein are end plugged wall flow filters comprising the disclosed plugging compositions and methods for the manufacture thereof. The glass powder forms crystalline cordierite.Type: ApplicationFiled: November 21, 2008Publication date: October 7, 2010Inventors: Adam J. Ellison, Kimberly M. Keegan, Paul J. Shustack, Patrick D. Tepesch
-
Patent number: 7241629Abstract: Labels, methods of making labels and methods of using labels are disclosed. The labels can be manufactured using fiber drawing techniques or by shutter masking. The labels can be used for detecting the presence of an analyte in a sample and for detecting interactions of biomolecules.Type: GrantFiled: December 20, 2001Date of Patent: July 10, 2007Assignee: Corning IncorporatedInventors: Matthew J. Dejneka, Joydeep Lahiri, Uwe R. Muller, Cameron W. Tanner, Patrick D. Tepesch
-
Patent number: 7238217Abstract: Diesel engine exhaust filtration systems, and ceramic honeycomb wall flow exhaust filters for such systems, wherein the filters comprise axially centralized filter sections having a higher heat capacity and/or a higher gas flow resistance than peripheral filter sections disposed radially outwardly thereof, the filters thereby exhibiting increased resistance to thermal damage from filter regeneration over-heating.Type: GrantFiled: April 23, 2004Date of Patent: July 3, 2007Assignee: Corning IncorporatedInventors: Willard A. Cutler, Patrick D. Tepesch, Christopher J. Warren, David S. Weiss
-
Patent number: 7071135Abstract: A ceramic body comprising a crystal phase of aluminum titanate in an amount of 50 to 95% by weight, and a glass phase in an amount of 5 to 50% by weight. The inventive ceramic body may include a second crystal phase, for example mullite in an amount of up to 40% by weight. The glass is an aluminosilicate including, in weight percent on an oxide basis, of 50–90 SiO2, 1–25 Al2O3, 0.5–10 TiO2, 0.5–20 R2O, where R is selected from the group consisting of Li, Na, K, Ru, Cs, Fr, and 0.5–20 R?O, where R? is selected from the group consisting of Be, Mg, Ca, Ba, Ra, and wherein the ceramic body includes not more than 2% by weight Fe2O3.Type: GrantFiled: September 29, 2004Date of Patent: July 4, 2006Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Patent number: 7001861Abstract: An aluminum titanate-based ceramic article having a composition comprising u (Al2O3—TiO2)+v (R)+w (3Al2O3—2SiO2)+x (Al2O3)+y (SiO2)+z (1.1SrO-1.5Al2O3-13.6SiO2—TiO2)+a (Fe2O3—TiO2)+b (MgO-2TiO2), where, R is SrO—Al2O3-2SiO2 or 11.2SrO-10.9Al2O3-24.1SiO2—TiO2, where u, v, w, x, y, z, a and b are weight fractions of each component such that (u+v+w+x+y+z+a+b=1), and 0.5<u?0.95, 0.01<v?0.5, 0.01<w?0.5, 0?x?0.5, 0?y?0.1, 0?z?0.5, 0<a?0.3, and 0?b?0.3. A method of forming the ceramic article is provided. The ceramic article is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: GrantFiled: July 24, 2003Date of Patent: February 21, 2006Assignee: Corning IncorporatedInventors: George H. Beall, Isabelle M. Melscoet-Chauvel, Steven B. Ogunwumi, Dell J. St. Julien, Patrick D. Tepesch, Christopher J. Warren
-
Patent number: 6994972Abstract: A planar, rigid substrate made from a porous, inorganic material coated with cationic polymer molecules for attachment of an array of biomolecules, such as DNA, RNA, oligonucleotides, peptides, and proteins. The substrate has a top surface with about at least 200 to about 200,000 times greater surface area than that of a comparable, non-porous substrate. The cationic polymer molecules are anchored on the top surface and in the pores of the porous material. In high-density applications, an array of polynucleotides of a known, predetermined sequence is attached to this cationic polymer layer, such that each of the polynucleotide is attached to a different localized area on the top surface. The top surface has a surface area for attaching biomolecules of approximately 387,500 cm2/cm2 of area (˜7.5 million cm2/1×3 inch piece of substrate). Each pore of the plurality of pores in the top surface of the substrate has a pore radius of between about 40 ? to about 75 ?.Type: GrantFiled: March 18, 2002Date of Patent: February 7, 2006Assignee: Corning IncorporatedInventors: Pronob Bardhan, Dana C. Bookbinder, Joydeep Lahiri, Cameron W. Tanner, Patrick D. Tepesch, Raja R. Wusirika
-
Patent number: 6942713Abstract: An aluminum titanate-based ceramic body having a composition a formula comprising a(Al2O3.TiO2)+b(CaO.Al2O3.2SiO2)+c(SrO.Al2O3.2SiO2)+d(BaO.Al2O3.2SiO2)+e(3Al2O3.2SiO2)+f(Al2O3)+g (SiO2)+h(Fe2O3.TiO2)+i(MgO.2TiO2), wherein a, b, c, d, e, f, g, h, and i are weight fractions of each component such that (a+b+c+d+e+f+g+h+i)=1, wherein 0.5<a?0.95; 0?b?0.5; 0?c?0.5; 0?d?0.5; 0<e?0.5; 0?f?0.5; 0?g?0.1; 0?h?0.3; 0?i?0.3; b+d>0.01. A method of forming the ceramic body is provided. The ceramic body is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: GrantFiled: September 30, 2004Date of Patent: September 13, 2005Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch, Raja R. Wusirika
-
Patent number: 6849181Abstract: The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1?x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.Type: GrantFiled: July 31, 2002Date of Patent: February 1, 2005Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Publication number: 20040161789Abstract: A porous inorganic substrate and method of fabricating such substrate for attaching an array of biological or chemical molecules to be used in a high-density microarray device. The substantially planar substrate comprises a porous inorganic layer adhered to a flat, rigid, non-porous, inorganic understructure having a coefficient of thermal expansion compatible with that of the porous inorganic layer. The porous inorganic layer is characterized as having dispersed throughout it a plurality of interconnecting voids as defined by a network of contiguous inorganic material, each of a predetermined mean size. The continuous inorganic material and contents of the voids exhibit a high contrast in their indices of refraction relative to each other. The substrate further comprises a uniform coating of a binding agent over at least a part of the surface area of the voids and the top surface of the porous inorganic layer.Type: ApplicationFiled: February 9, 2004Publication date: August 19, 2004Inventors: Cameron W. Tanner, Patrick D. Tepesch, Raja R. Wusirika
-
Patent number: 6750023Abstract: A porous inorganic substrate and method of fabricating such substrate for attaching an array of biological or chemical molecules to be used in a high-density microarray device. The substantially planar substrate comprises a porous inorganic layer adhered to a flat, rigid, non-porous, inorganic understructure having a coefficient of thermal expansion compatible with that of the porous inorganic layer. The porous inorganic layer is characterized as having dispersed throughout it a plurality of interconnecting voids as defined by a network of contiguous inorganic material, each of a predetermined mean size. The continuous inorganic material and contents of the voids exhibit a high contrast in their indices of refraction relative to each other. The substrate further comprises a uniform coating of a binding agent over at least a part of the surface area of the voids and the top surface of the porous inorganic layer.Type: GrantFiled: March 18, 2002Date of Patent: June 15, 2004Assignee: Corning IncorporatedInventors: Cameron W. Tanner, Patrick D. Tepesch, Raja R. Wusirika
-
Publication number: 20040092381Abstract: An aluminum titanate-based ceramic article having a composition comprising u (Al2O3-TiO2)+v (R)+w (3Al2O3-2SiO2)+x (Al2O3)+y (SiO2)+z (1.1SrO-1.5Al2O3-13.6SiO2-TiO2)+a (Fe2O3-TiO2)+b (MgO-2TiO2), where, R is SrO-Al2O3-2SiO2 or 11.2SrO-10.9Al2O3-24.1SiO2-TiO2, where u, v, w, x, y, z, a and b are weight fractions of each component such that (u+v+w+x+y+z+a+b=1), and 0.5<u≦0.95, 0.01<v≦0.5, 0.01<w≦0.5, 0<x≦0.5, 0<y≦0.1, 0<z≦0.5, 0<a≦0.3, and 0<b≦0.3. A method of forming the ceramic article is provided. The ceramic article is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: ApplicationFiled: July 24, 2003Publication date: May 13, 2004Inventors: George H. Beall, Isabelle M. Melscoet-Chauvel, Steven B. Ogunwumi, Dell J. St. Julien, Patrick D. Tepesch, Christopher J. Warren
-
Publication number: 20040020846Abstract: The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1−x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.Type: ApplicationFiled: July 31, 2002Publication date: February 5, 2004Inventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Publication number: 20030198385Abstract: Image analysis techniques may be provided. Location of objects in an image may be determined based on intensity characteristics of pixels in the image. Objects that have been located may be mapped to a source for the objects based for example, on a grid structure that may have been used to place the objects. Differential analysis of objects of two source materials in images may be determined based on aligned versions of the images. Filtering may be used to weigh pixel characteristics. Such object analysis techniques may have been encoded into a set of machine-executable instructions and stored on a machine-readable storage medium for use by equipment that is to perform the techniques.Type: ApplicationFiled: March 8, 2001Publication date: October 23, 2003Inventors: Cameron W. Tanner, Patrick D. Tepesch
-
Publication number: 20030119207Abstract: Labels, methods of making labels and methods of using labels are disclosed. The labels can be manufactured using fiber drawing techniques or by shutter masking. The labels can be used for detecting the presence of an analyte in a sample and for detecting interactions of biomolecules.Type: ApplicationFiled: December 20, 2001Publication date: June 26, 2003Inventors: Matthew J. Dejneka, Joydeep Lahiri, Uwe R. Muller, Cameron W. Tanner, Patrick D. Tepesch
-
Publication number: 20030003474Abstract: A porous inorganic substrate and method of fabricating such substrate for attaching an array of biological or chemical molecules to be used in a high-density microarray device. The substantially planar substrate comprises a porous inorganic layer adhered to a flat, rigid, non-porous, inorganic understructure having a coefficient of thermal expansion compatible with that of the porous inorganic layer. The porous inorganic layer is characterized as having dispersed throughout it a plurality of interconnecting voids as defined by a network of contiguous inorganic material, each of a predetermined mean size. The continuous inorganic material and contents of the voids exhibit a high contrast in their indices of refraction relative to each other. The substrate further comprises a uniform coating of a binding agent over at least a part of the surface area of the voids and the top surface of the porous inorganic layer.Type: ApplicationFiled: March 18, 2002Publication date: January 2, 2003Inventors: Cameron W. Tanner, Patrick D. Tepesch
-
Publication number: 20020142339Abstract: A planar, rigid substrate made from a porous, inorganic material coated with cationic polymer molecules for attachment of an array of biomolecules, such as DNA, RNA, oligonucleotides, peptides, and proteins. The substrate has a top surface with about at least 200 to about 200,000 times greater surface area than that of a comparable, non-porous substrate. The cationic polymer molecules are anchored on the top surface and in the pores of the porous material. In high-density applications, an array of polynucleotides of a known, predetermined sequence is attached to this cationic polymer layer, such that each of the polynucleotide is attached to a different localized area on the top surface. The top surface has a surface area for attaching biomolecules of approximately 387,500 cm2/cm2 of area (˜7.5 million cm2/1×3 inch piece of substrate). Each pore of the plurality of pores in the top surface of the substrate has a pore radius of between about 40 Å to about 75 Å.Type: ApplicationFiled: March 18, 2002Publication date: October 3, 2002Inventors: Pronob Bardhan, Dana C. Bookbinder, Joydeep Lahiri, Cameron W. Tanner, Patrick D. Tepesch, Raja R. Wusirika