Patents by Inventor Patrick Gilliland

Patrick Gilliland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11702022
    Abstract: A collision mitigation system makes use of ladar sensors to identify obstacles and to predict unavoidable collisions therewith, and a duplex radio link in communication with secondary vehicles, and a number of external airbags deployable under the control of an airbag control unit, to reduce the forces of impact on the host vehicle, secondary vehicles, and bipeds and quadrupeds wandering into the roadway. A suspension modification system makes use of ladar sensors to identify road hazards, and make adaptations to a number of active suspension components, each with the ability to absorb shock, elevate or lower the vehicle, and adjust the spring rate of the individual wheel suspensions.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: July 18, 2023
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Roger Stettner, Patrick Gilliland, Barton Goldstein, Andrew Duerner
  • Publication number: 20230213617
    Abstract: A dual mode ladar system includes a laser transmitter having a wavelength of operation and a modulator connected thereto to impose a modulation thereon. The modulator is configured to impose amplitude modulation and/or frequency modulation. Diffusing optics illuminate a field of view and an array of light sensitive detectors each produce an electrical response signal from a reflected portion of the laser light output.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 6, 2023
    Applicant: Continental Autonomous Mobility US, LLC
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 11604255
    Abstract: A dual mode ladar system includes a laser transmitter having a wavelength of operation and a modulator connected thereto to impose a modulation thereon. The modulator is configured to impose amplitude modulation and/or frequency modulation. Diffusing optics illuminate a field of view and an array of light sensitive detectors each produce an electrical response signal from a reflected portion of the laser light output.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: March 14, 2023
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 11579266
    Abstract: A lightweight, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for modular manufacture and rapid field configurability and provisioning. The sensor generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in multi-sensor television production systems and 3-D graphics capture and moviemaking. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 14, 2023
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Patrick Gilliland, Laurent Heughebaert, Joseph Spagnolia, Brad Short, Roger Stettner
  • Publication number: 20230004160
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Continental Autonomous Mobility US, LLC
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heuhebaert, Barton M Goldstein
  • Publication number: 20220348158
    Abstract: A collision mitigation system makes use of ladar sensors to identify obstacles and to predict unavoidable collisions therewith, and a duplex radio link in communication with secondary vehicles, and a number of external airbags deployable under the control of an airbag control unit, to reduce the forces of impact on the host vehicle, secondary vehicles, and bipeds and quadrupeds wandering into the roadway. A suspension modification system makes use of ladar sensors to identify road hazards, and make adaptations to a number of active suspension components, each with the ability to absorb shock, elevate or lower the vehicle, and adjust the spring rate of the individual wheel suspensions.
    Type: Application
    Filed: June 28, 2022
    Publication date: November 3, 2022
    Applicant: Continental Autonomous Mobility US, LLC
    Inventors: Roger Stettner, Patrick Gilliland, Barton Goldstein, Andrew Duerner
  • Patent number: 11467597
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: October 11, 2022
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heuhebaert, Barton M Goldstein
  • Patent number: 11400877
    Abstract: A collision mitigation system makes use of ladar sensors to identify obstacles and to predict unavoidable collisions therewith, and a duplex radio link in communication with secondary vehicles, and a number of external airbags deployable under the control of an airbag control unit, to reduce the forces of impact on the host vehicle, secondary vehicles, and bipeds and quadrupeds wandering into the roadway. A suspension modification system makes use of ladar sensors to identify road hazards, and make adaptations to a number of active suspension components, each with the ability to absorb shock, elevate or lower the vehicle, and adjust the spring rate of the individual wheel suspensions.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 2, 2022
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Roger Stettner, Patrick Gilliland, Barton Goldstein, Andrew Duerner
  • Publication number: 20210293964
    Abstract: A lightweight, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for modular manufacture and rapid field configurability and provisioning. The sensor generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in multi-sensor television production systems and 3-D graphics capture and moviemaking. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 23, 2021
    Applicant: CONTINENTAL ADVANCED LIDAR SOLUTIONS US, LLC.
    Inventors: Patrick Gilliland, Laurent Heughebaert, Joseph Spagnolia, Brad Short, Roger Stettner
  • Patent number: 10955532
    Abstract: A lightweight, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for modular manufacture and rapid field configurability and provisioning. The sensor generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in multi-sensor television production systems and 3-D graphics capture and moviemaking. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: March 23, 2021
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Patrick Gilliland, Laurent Heughebaert, Joseph Spagnolia, Brad Short, Roger Stettner
  • Publication number: 20210080585
    Abstract: A system for landing or docking a mobile platform is enabled by a flash LADAR sensor having an adaptive controller with Automatic Gain Control (AGC). Range gating in the LADAR sensor penetrates through diffuse reflectors. The LADAR sensor adapted for landing/approach comprises a system controller, pulsed laser transmitter, transmit optics, receive optics, a focal plane array of detectors, a readout integrated circuit, camera support electronics and image processor, an image analysis and bias calculation processor, and a detector array bias control circuit. The system is capable of developing a complete 3-D scene from a single point of view.
    Type: Application
    Filed: June 26, 2020
    Publication date: March 18, 2021
    Applicant: Continental Advanced Lidar Solutions US, LLC
    Inventors: Patrick Gilliland, Robert W. Koseluk, Steve Penniman, Brad Short, Joseph Spagnolia, Roger Stettner
  • Publication number: 20210003713
    Abstract: A collision mitigation system makes use of ladar sensors to identify obstacles and to predict unavoidable collisions therewith, and a duplex radio link in communication with secondary vehicles, and a number of external airbags deployable under the control of an airbag control unit, to reduce the forces of impact on the host vehicle, secondary vehicles, and bipeds and quadrupeds wandering into the roadway. A suspension modification system makes use of ladar sensors to identify road hazards, and make adaptations to a number of active suspension components, each with the ability to absorb shock, elevate or lower the vehicle, and adjust the spring rate of the individual wheel suspensions.
    Type: Application
    Filed: September 14, 2020
    Publication date: January 7, 2021
    Applicant: Continental Advanced Lidar Solutions US, LLC
    Inventors: Roger Stettner, Patrick Gilliland, Barton Goldstein, Andrew Duerner
  • Patent number: 10873711
    Abstract: A three-dimensional imaging system includes a ladar sensor with a first field of view adapted to produce a three-dimensional image. The system also includes a visible light camera with a second field of view overlapping the first field of view and adapted to produce a two-dimensional image output. At least one digital processor is connected to the ladar sensor and the visible light camera and adapted to merge the three-dimensional image output with the two-dimensional image output into a three-dimensional point cloud output.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: December 22, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC.
    Inventors: Roger Stettner, Brad Short, Patrick Gilliland, Thomas Laux, Laurent Heughebaert
  • Publication number: 20200333437
    Abstract: A dual mode ladar system includes a laser transmitter having a wavelength of operation and a modulator connected thereto to impose a modulation thereon. The modulator is configured to impose amplitude modulation and/or frequency modulation. Diffusing optics illuminate a field of view and an array of light sensitive detectors each produce an electrical response signal from a reflected portion of the laser light output.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 22, 2020
    Applicant: Continental Advanced Lidar Solutions US, LLC
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 10802149
    Abstract: A collision mitigation system makes use of ladar sensors to identify obstacles and to predict unavoidable collisions therewith, and a duplex radio link in communication with secondary vehicles, and a number of external airbags deployable under the control of an airbag control unit, to reduce the forces of impact on the host vehicle, secondary vehicles, and bipeds and quadrupeds wandering into the roadway. A suspension modification system makes use of ladar sensors to identify road hazards, and make adaptations to a number of active suspension components, each with the ability to absorb shock, elevate or lower the vehicle, and adjust the spring rate of the individual wheel suspensions.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 13, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC
    Inventors: Roger Stettner, Patrick Gilliland, Barton Goldstein, Andrew Duerner
  • Patent number: 10732264
    Abstract: A dual mode ladar system includes a laser transmitter having a wavelength of operation and a modulator connected thereto to impose a modulation thereon. The modulator is configured to impose amplitude modulation and/or frequency modulation. Diffusing optics illuminate a field of view and an array of light sensitive detectors each produce an electrical response signal from a reflected portion of the laser light output.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 10732283
    Abstract: A system for landing or docking a mobile platform is enabled by a flash LADAR sensor having an adaptive controller with Automatic Gain Control (AGC). Range gating in the LADAR sensor penetrates through diffuse reflectors. The LADAR sensor adapted for landing/approach comprises a system controller, pulsed laser transmitter, transmit optics, receive optics, a focal plane array of detectors, a readout integrated circuit, camera support electronics and image processor, an image analysis and bias calculation processor, and a detector array bias control circuit. The system is capable of developing a complete 3-D scene from a single point of view.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 4, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC
    Inventors: Patrick Gilliland, Robert W Koseluck, Steve Penniman, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 10557926
    Abstract: A lightweight, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for modular manufacture and rapid field configurability and provisioning. The sensor generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in multi-sensor television production systems and 3-D graphics capture and moviemaking. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 11, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC
    Inventors: Patrick Gilliland, Laurent Heughebaert, Joseph Spagnolia, Brad Short, Roger Stettner
  • Publication number: 20200025895
    Abstract: A lightweight, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for modular manufacture and rapid field configurability and provisioning. The sensor generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in multi-sensor television production systems and 3-D graphics capture and moviemaking. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities.
    Type: Application
    Filed: April 10, 2019
    Publication date: January 23, 2020
    Applicant: CONTINENTAL ADVANCED LIDAR SOLUTIONS US, LLC.
    Inventors: Patrick Gilliland, Laurent Heughebaert, Joseph Spagnolia, Brad Short, Roger Stettner
  • Publication number: 20190324461
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 24, 2019
    Applicant: Continental Advanced Lidar Solutions US, LLC.
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heuhebaert, Bart M. Goldstein