Patents by Inventor Patrick Haben

Patrick Haben has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117095
    Abstract: A curable, optical ink comprises first and second monomer monomers. The first monomer is photopolymerizable over a first wavelength band. The multifunctional second monomer is photopolymerizable over a second wavelength band, which is distinct from the first wavelength band.
    Type: Application
    Filed: September 18, 2023
    Publication date: April 11, 2024
    Inventors: Edward Whitney Elliott, III, Sergiu Coporan, Patrick Haben, Alec Gosiak, Sangyup Song, Robol Lenorage Chamika Lenora, George Williams
  • Patent number: 11897766
    Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: February 13, 2024
    Assignee: SHOEI CHEMICAL INC.
    Inventor: Patrick Haben
  • Publication number: 20230065394
    Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.
    Type: Application
    Filed: November 3, 2022
    Publication date: March 2, 2023
    Inventor: Patrick Haben
  • Patent number: 11517963
    Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 6, 2022
    Assignee: SHOEI CHEMICAL INC.
    Inventor: Patrick Haben
  • Publication number: 20210163771
    Abstract: Examples are disclosed that relate to method for producing nanoparticles using a shear-flow reactor. One disclosed example provides a method for producing nanoparticles with ligands bound to the surface of the nanoparticles, which comprises a step of mixing and processing a first solution and a second solution in a shear-flow reactor, and the first solution contains a first solvent in which nanoparticles having a initial ligand bound to the surface of the nanoparticles are dissolved, the second solution contains a second solvent in which the second ligand dissolved, a ligand exchange reaction is carried out in the shear-flow reactor to form a solution of the nanoparticles in which the second ligand is bound to the surface of the nanoparticles.
    Type: Application
    Filed: April 16, 2019
    Publication date: June 3, 2021
    Inventors: Patrick Haben, Paul Tyrell, David M. Schut
  • Publication number: 20210094099
    Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 1, 2021
    Inventor: Patrick Haben
  • Publication number: 20180009829
    Abstract: Disclosed herein are embodiments of gold nanoparticles and methods of making and using the gold nanoparticles. The disclosed gold nanoparticles have core sizes and polydispersities controlled by the methods of making the gold nanoparticles. In some embodiments, the methods of making the gold nanoparticles can concern using flow reactors and reaction conditions controlled to make gold nanoparticles having a desired core size. The gold nanoparticles disclosed herein also comprise various ligands that can be used to facilitate the use of the gold nanoparticles in a variety of applications.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 11, 2018
    Applicant: University of Oregon
    Inventors: James E. Hutchison, Edward W. Elliott, III, Zachary Kennedy, Patrick Haben
  • Patent number: 9771380
    Abstract: Disclosed herein are embodiments of gold nanoparticles and methods of making and using the gold nanoparticles. The disclosed gold nanoparticles have core sizes and polydispersities controlled by the methods of making the gold nanoparticles. In some embodiments, the methods of making the gold nanoparticles can concern using flow reactors and reaction conditions controlled to make gold nanoparticles having a desired core size. The gold nanoparticles disclosed herein also comprise various ligands that can be used to facilitate the use of the gold nanoparticles in a variety of applications.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: September 26, 2017
    Assignee: University of Oregon
    Inventors: James E. Hutchison, Edward W. Elliott, III, Zachary Kennedy, Patrick Haben
  • Publication number: 20150353580
    Abstract: Disclosed herein are embodiments of gold nanoparticles and methods of making and using the gold nanoparticles. The disclosed gold nanoparticles have core sizes and polydispersities controlled by the methods of making the gold nanoparticles. In some embodiments, the methods of making the gold nanoparticles can concern using flow reactors and reaction conditions controlled to make gold nanoparticles having a desired core size. The gold nanoparticles disclosed herein also comprise various ligands that can be used to facilitate the use of the gold nanoparticles in a variety of applications.
    Type: Application
    Filed: February 27, 2015
    Publication date: December 10, 2015
    Inventors: James E. Hutchison, Edward W. Elliott, III, Zachary Kennedy, Patrick Haben