Patents by Inventor Patrick Hunziker

Patrick Hunziker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932740
    Abstract: The present invention relates to a 3D-formable sheet material, a process for the preparation of a 3D-formed article, the use of a cellulose material and at least one particulate inorganic filler material for the preparation of a 3D-formable sheet material and for increasing the stretchability of a 3D-formable sheet material, the use of a 3D-formable sheet material in 3D-forming processes as well as a 3D-formed article comprising the 3D-formable sheet material according.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: March 19, 2024
    Assignee: FIBERLEAN TECHNOLOGIES LIMITED
    Inventors: Johannes Kritzinger, Michel Schenker, Patrick Gane, Philipp Hunziker
  • Publication number: 20220296875
    Abstract: The present invention relates to systems, methods and algorithms for determination of heart pump function and their use in livings subject are described. The invention further relates to complementary parts of such systems that work best in combination. Medical catheters, sheaths and shafts are disclosed that carry an arrangement of integrated digital sensor systems-on-chip (SoC) in the portion thereof residing inside the body. These devices combine at their portion that resides inside the body, the complete chain of signal transduction, signal analog-to-digital conversion and digital signal transmission, and allow to acquire single and multiple physical entities in a single setup. In specific instances the devices integrate wireless data transfer functionality, and in specific instances they integrate wireless energy harvesting for battery-free functionality.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Oleksii Morozov, Patrick Hunziker
  • Patent number: 11389640
    Abstract: The present invention relates to systems, methods and algorithms for determination of heart pump function and their use in livings subject are described. The invention further relates to complementary parts of such systems that work best in combination. Medical catheters, sheaths and shafts are disclosed that carry an arrangement of integrated digital sensor systems-on-chip (SoC) in the portion thereof residing inside the body. These devices combine at their portion that resides inside the body, the complete chain of signal transduction, signal analog-to-digital conversion and digital signal transmission, and allow to acquire single and multiple physical entities in a single setup. In specific instances the devices integrate wireless data transfer functionality, and in specific instances they integrate wireless energy harvesting for battery-free functionality.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 19, 2022
    Assignees: HighDim GmbH, Universitätsspital Basel
    Inventors: Oleksii Morozov, Patrick Hunziker
  • Publication number: 20210146109
    Abstract: A sheath for producing a fully sealed access to the interior of a vessel of an animal or human body comprises a base sheath having a tubular body defining a pass-through channel. The base sheath is adapted to be inserted into the vessel through a vessel aperture. A wall of the tubular body of the base sheath has a through channel. This channel extends in the wall from the distal end towards the proximal end. The channel can be present separately from the pass-through channel of the base sheath or can form a sideways extension of the pass-through channel, at least at the distal end. Such through channel is adapted to conduct blood from the vessel to the proximal end of the sheath when the sheath has been inserted into a vessel.
    Type: Application
    Filed: December 1, 2020
    Publication date: May 20, 2021
    Inventors: Thorsten Siess, Christoph Nix, Frank Kirchhoff, Patrick Hunziker
  • Patent number: 10881845
    Abstract: A sheath for producing a fully sealed access to the interior of a vessel of an animal or human body comprises a base sheath having a tubular body defining a pass-through channel. The base sheath is adapted to be inserted into the vessel through a vessel aperture. A wall of the tubular body of the base sheath has a through channel. This channel extends in the wall from the distal end towards the proximal end. The channel can be present separately from the pass-through channel of the base sheath or can form a sideways extension of the pass-through channel, at least at the distal end. Such through channel is adapted to conduct blood from the vessel to the proximal end of the sheath when the sheath has been inserted into a vessel.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: January 5, 2021
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Christoph Nix, Frank Kirchhoff, Patrick Hunziker
  • Patent number: 10513585
    Abstract: The preparation of poly-2-oxazoline amphiphilic polymers and copolymers is described. Self-assembled particles comprising these amphiphilic polymers and which are useful for the targeted delivery of therapeutic and diagnostic agents are also described.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: December 24, 2019
    Assignee: UNIVERSITÄTSSPITAL BASEL
    Inventors: Patrick Hunziker, Kegang Liu
  • Publication number: 20190381226
    Abstract: The present invention relates to systems, methods and algorithms for determination of heart pump function and their use in livings subject are described. The invention further relates to complementary parts of such systems that work best in combination. Medical catheters, sheaths and shafts are disclosed that carry an arrangement of integrated digital sensor systems-on-chip (SoC) in the portion thereof residing inside the body. These devices combine at their portion that resides inside the body, the complete chain of signal transduction, signal analog-to-digital conversion and digital signal transmission, and allow to acquire single and multiple physical entities in a single setup. In specific instances the devices integrate wireless data transfer functionality, and in specific instances they integrate wireless energy harvesting for battery-free functionality.
    Type: Application
    Filed: January 19, 2018
    Publication date: December 19, 2019
    Inventors: Oleksii Morozov, Patrick Hunziker
  • Publication number: 20190326017
    Abstract: Apparatus and methods for calculating cardiac output (CO) of a living subject using applanation tonometry measurements. In one embodiment, the apparatus and methods build a nonlinear mathematical model to correlate physiologic source data vectors to target CO values. The source data vectors include one or more measurable or derivable parameters such as: systolic and diastolic pressure, pulse pressure, beat-to-beat interval, mean arterial pressure, maximal slope of the pressure rise during systole, the area under systolic part of the pulse pressure wave, gender (male or female), age, height and weight. The target CO values are acquired using various methods, across a plurality of individuals. Multidimensional nonlinear optimization is then used to find a mathematical model which transforms the source data to the target CO data. The model is then applied to an individual by acquiring physiologic data for the individual and applying the model to the collected data.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 24, 2019
    Inventors: Oliver Goedje, Matthias Bohn, Patrick Hunziker, Oleksii Morozov, Felix Friedrich
  • Patent number: 9949696
    Abstract: Apparatus and methods for calculating cardiac output (CO) of a living subject using applanation tonometry measurements. In one embodiment, the apparatus and methods build a nonlinear mathematical model to correlate physiologic source data vectors to target CO values. The source data vectors include one or more measurable or derivable parameters such as: systolic and diastolic pressure, pulse pressure, beat-to-beat interval, mean arterial pressure, maximal slope of the pressure rise during systole, the area under systolic part of the pulse pressure wave, gender (male or female), age, height and weight. The target CO values are acquired using various methods, across a plurality of individuals. Multidimensional nonlinear optimization is then used to find a mathematical model which transforms the source data to the target CO data. The model is then applied to an individual by acquiring physiologic data for the individual and applying the model to the collected data.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 24, 2018
    Assignee: TENSYS MEDICAL, INC.
    Inventors: Oliver Goedje, Matthias Bohn, Patrick Hunziker, Oleksii Morozov, Felix Friedrich
  • Publication number: 20170369655
    Abstract: The preparation of poly-2-oxazoline amphiphilic polymers and copolymers is described. Self-assembled particles comprising these amphiphilic polymers and which are useful for the targeted delivery of therapeutic and diagnostic agents are also described.
    Type: Application
    Filed: December 23, 2015
    Publication date: December 28, 2017
    Inventors: Patrick HUNZIKER, Kegang LIU
  • Publication number: 20170143952
    Abstract: A sheath for producing a fully sealed access to the interior of a vessel of an animal or human body comprises a base sheath having a tubular body defining a pass-through channel. The base sheath is adapted to be inserted into the vessel through a vessel aperture. A wall of the tubular body of the base sheath has a through channel. This channel extends in the wall from the distal end towards the proximal end. The channel can be present separately from the pass-through channel of the base sheath or can form a sideways extension of the pass-through channel, at least at the distal end. Such through channel is adapted to conduct blood from the vessel to the proximal end of the sheath when the sheath has been inserted into a vessel.
    Type: Application
    Filed: July 6, 2015
    Publication date: May 25, 2017
    Inventors: Thorsten Siess, Christoph Nix, Frank Kirchhoff, Patrick Hunziker
  • Patent number: 9345436
    Abstract: Apparatus and methods for calculating cardiac output (CO) of a living subject. In one embodiment, the apparatus and methods build a nonlinear mathematical model to correlate physiologic source data vectors to target CO values. The source data vectors include one or more measurable or derivable parameters such as: systolic and diastolic pressure, pulse pressure, beat-to-beat interval, mean arterial pressure, maximal slope of the pressure rise during systole, the area under systolic part of the pulse pressure wave, gender (male or female), age, height and weight. The target CO values are acquired using various methods, across a plurality of individuals. Multidimensional nonlinear optimization is then used to find a mathematical model which transforms the source data to the target CO data. The model is then applied to an individual by acquiring physiologic data for the individual and applying the model to the collected data.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 24, 2016
    Assignee: HighDim GmbH
    Inventors: Patrick Hunziker, Oleksii Morozov, Felix Friedrich
  • Publication number: 20140276071
    Abstract: Apparatus and methods for calculating cardiac output (CO) of a living subject. In one embodiment, the apparatus and methods build a nonlinear mathematical model to correlate physiologic source data vectors to target CO values. The source data vectors include one or more measurable or derivable parameters such as: systolic and diastolic pressure, pulse pressure, beat-to-beat interval, mean arterial pressure, maximal slope of the pressure rise during systole, the area under systolic part of the pulse pressure wave, gender (male or female), age, height and weight. The target CO values are acquired using various methods, across a plurality of individuals. Multidimensional nonlinear optimization is then used to find a mathematical model which transforms the source data to the target CO data. The model is then applied to an individual by acquiring physiologic data for the individual and applying the model to the collected data.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Patrick Hunziker, Oleksii Morozov, Felix Friedrich
  • Publication number: 20140275937
    Abstract: Apparatus and methods for calculating cardiac output (CO) of a living subject using applanation tonometry measurements. In one embodiment, the apparatus and methods build a nonlinear mathematical model to correlate physiologic source data vectors to target CO values. The source data vectors include one or more measurable or derivable parameters such as: systolic and diastolic pressure, pulse pressure, beat-to-beat interval, mean arterial pressure, maximal slope of the pressure rise during systole, the area under systolic part of the pulse pressure wave, gender (male or female), age, height and weight. The target CO values are acquired using various methods, across a plurality of individuals. Multidimensional nonlinear optimization is then used to find a mathematical model which transforms the source data to the target CO data. The model is then applied to an individual by acquiring physiologic data for the individual and applying the model to the collected data.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Oliver Goedje, Matthias Bohn, Patrick Hunziker, Oleksii Morozov, Felix Friedrich
  • Patent number: 6579453
    Abstract: Apparatus is disclosed for separating magnetic particles in suspension in a liquid contained in a reaction vessel of the type used in an automatic apparatus for processing biological samples. The apparatus comprises a rotatable carrier holding an array of magnet elements positioned on the carrier at different distances from the rotation axis of the carrier and at different azimuth angles. The carrier and the array of magnet elements can be positioned at a plurality of predetermined angular positions and heights.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: June 17, 2003
    Assignee: Roche Diagnostics Corporation
    Inventors: Guido Bächler, Patrick Hunziker, Werner Rey
  • Patent number: 5910111
    Abstract: According to the invention, a method to process heart motion image data into a portable display medium is provided. An image sequence of heart motion is provided. Image sequences are incorporated in angularly multiplexed holograms so that the parallax, i.e. the relative position of observer and holographic medium, encodes heart motion. This way, a change in the viewing angle of the printed hologram leads to the perception of the complete heart cycle. Using this technique, it is possible to incorporate a complete temporal image sequence of the beating human heart to a single printable image which can be used for display, storage, documentation and reporting.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: June 8, 1999
    Inventor: Patrick Hunziker