Patents by Inventor Patrick J. Turner

Patrick J. Turner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9165101
    Abstract: Methods for the design of microwave filters comprises comprising preferably the steps of inputting a first set of filter requirements, inputting a selection of circuit element types, inputting a selection of lossless circuit response variables, calculating normalized circuit element values based on the input parameters, and generate a first circuit, insert parasitic effects to the normalized circuit element values of the first circuit, and output at least the first circuit including the post-parasitic effect circuit values. Additional optional steps include: requirements to a normalized design space, performing an equivalent circuit transformation, unmapping the circuit to a real design space, performing a survey, and element removal optimization. Computer implement software, systems, and microwave filters designed in accordance with the method are included.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 20, 2015
    Assignee: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20150220665
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Application
    Filed: March 23, 2015
    Publication date: August 6, 2015
    Applicant: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 9038005
    Abstract: Methods for the design of microwave filters comprises comprising preferably the steps of inputting a first set of filter requirements, inputting a selection of circuit element types, inputting a selection of lossless circuit response variables, calculating normalized circuit element values based on the input parameters, and generate a first circuit, insert parasitic effects to the normalized circuit element values of the first circuit, and output at least the first circuit including the post-parasitic effect circuit values. Additional optional steps include: requirements to a normalized design space, performing an equivalent circuit transformation, unmapping the circuit to a real design space, performing a survey, and element removal optimization. Computer implement software, systems, and microwave filters designed in accordance with the method are included.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Assignee: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20150106072
    Abstract: Methods for the design of microwave filters comprises comprising preferably the steps of inputting a first set of filter requirements, inputting a selection of circuit element types, inputting a selection of lossless circuit response variables, calculating normalized circuit element values based on the input parameters, and generate a first circuit, insert parasitic effects to the normalized circuit element values of the first circuit, and output at least the first circuit including the post-parasitic effect circuit values. Additional optional steps include: requirements to a normalized design space, performing an equivalent circuit transformation, unmapping the circuit to a real design space, performing a survey, and element removal optimization. Computer implement software, systems, and microwave filters designed in accordance with the method are included.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 8990742
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 24, 2015
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20140282311
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20140266511
    Abstract: Methods for the design of microwave filters comprises comprising preferably the steps of inputting a first set of filter requirements, inputting a selection of circuit element types, inputting a selection of lossless circuit response variables, calculating normalized circuit element values based on the input parameters, and generate a first circuit, insert parasitic effects to the normalized circuit element values of the first circuit, and output at least the first circuit including the post-parasitic effect circuit values. Additional optional steps include: requirements to a normalized design space, performing an equivalent circuit transformation, unmapping the circuit to a real design space, performing a survey, and element removal optimization. Computer implement software, systems, and microwave filters designed in accordance with the method are included.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: RESONANT LLC
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 6743072
    Abstract: An amusement device used to move a supported display object through an erratic path. The amusement device includes a base element in which is disposed a motorized assembly. A support spring is used to interconnect a display object to the motorized assembly in the base element. The support spring has a first end and a second end. The first end of the support spring is coupled to the motorized assembly within the base element, wherein the support spring is caused to move by the vibrating assembly. The remainder of the support spring extends freely from the base element. The display object is coupled to the second end of the support spring.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 1, 2004
    Inventors: Webb T. Nelson, Patrick J. Turner
  • Publication number: 20030190859
    Abstract: An amusement device used to move a supported display object through an erratic path. The amusement device includes a base element in which is disposed a motorized assembly. A support spring is used to interconnect a display object to the motorized assembly in the base element. The support spring has a first end and a second end. The first end of the support spring is coupled to the motorized assembly within the base element, wherein the support spring is caused to move by the vibrating assembly. The remainder of the support spring extends freely from the base element. The display object is coupled to the second end of the support spring.
    Type: Application
    Filed: March 31, 2003
    Publication date: October 9, 2003
    Inventors: Webb T. Nelson, Patrick J. Turner
  • Publication number: 20030124950
    Abstract: An amusement device is provided that can be used as an electric yo-yo and as a mechanism for producing aesthetically pleasing string oscillations. The amusement device includes a battery operated spinning mechanism that can be selectively turned on and off by a person using the device. A flexible tether is provided having a first end and a second end. The first end of the tether is coupled to the spinning mechanism and is spun by the spinning mechanism. A display object is coupled to the second end of the flexible tether, wherein the flexible tether is the only physical interconnection between the spinning mechanism and the display object. The spinning mechanism can be used either to rotate the tether to create oscillations in the tether, or wind the tether, thereby creating a yo-yo with the display object.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 3, 2003
    Inventor: Patrick J. Turner
  • Publication number: 20020119893
    Abstract: Disclosed herein is a method of forming a superconductor, comprising the steps of: providing a substrate and exposing the substrate to a first atmosphere, including precursors to form a first epitaxial layer segment. The first layer segment is then exposed to a second atmosphere, including precursors to form a second epitaxial layer segment, and the second layer segment is exposed to a third atmosphere including precursors to form a third epitaxial layer segment. Each of the first and third layer segments are each formed from a superconductor material and the second layer segment is formed from a material different from the first and third layer segments and the first, second and third layer segments have a collective thickness, the third layer segment having an outer surface with a roughness which is less than that of a single layer of the superconductor material with a thickness equal to the collective thickness.
    Type: Application
    Filed: September 10, 2001
    Publication date: August 29, 2002
    Inventors: Robert A. Hughes, Patrick J. Turner, John S. Preston
  • Patent number: 6287969
    Abstract: Disclosed herein is a method of forming a superconductor, comprising the steps of: providing a substrate and exposing the substrate to a first atmosphere, including precursors to form a first epitaxial layer segment. The first layer segment is then exposed to a second atmosphere, including precursors to form a second epitaxial layer segment, and the second layer segment is exposed to a third atmosphere including precursors to form a third epitaxial layer segment. Each of the first and third layer segments are each formed from a superconductor material and the second layer segment is formed from a material different from the first and third layer segments and the first, second and third layer segments have a collective thickness, the third layer segment having an outer surface with a roughness which is less than that of a single layer of the superconductor material with a thickness equal to the collective thickness.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: September 11, 2001
    Assignee: McMaster University
    Inventors: Robert A. Hughes, Patrick J. Turner, John S Preston
  • Patent number: 5994276
    Abstract: A composite high Tc superconductor film is applied to a substrate, said film as applied having a thickness of at least 5000 Angstrom and an outer surface having an average roughness not exceeding 250 Angstrom.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: November 30, 1999
    Assignee: McMaster University
    Inventors: Robert A. Hughes, Patrick J. Turner, John S Preston
  • Patent number: 4943718
    Abstract: The invention provides a mass spectrometer comprising an ion source provided with an electron emitting source and magnets which are cooperable to produce a collimated electron beam within the ion source; a mass analyzer; first and second electrodes which cooperate to limit the angular divergence of the ion beam which emerges from the source along the ion beam axis; and magnetic field screens disposed between the first and second electrode means, which reduce the field due to the magnets along the ion beam axis. In this way the mass discrimination introduced by the magnets in prior ion sources is reduced and the accuracy of isotropic ratio measurements is improved.
    Type: Grant
    Filed: February 17, 1989
    Date of Patent: July 24, 1990
    Assignee: VG Instruments Group Limited
    Inventors: Raymond C. Haines, Patrick J. Turner
  • Patent number: 4524275
    Abstract: In a mass spectrometer, suitable for use in the determination of isotope ratios, having as a mass selector a sector magnet and detector means for detecting and measuring the intensity of ion beams at two or more positions in the focal plane of said sector magnet, the improvement comprises providing the exit (and optionally also the entrance) pole face of said sector magnet with a curvature such that the focal plane of said sector magnet lies substantially at right angles to the ion optical axis as it passes through said focal plane. With this arrangement, motion of detector means between positions in said focal plane by means of mechanical linkages controlled from outside the vacuum system of the mass spectrometer is facilitated.
    Type: Grant
    Filed: December 6, 1982
    Date of Patent: June 18, 1985
    Inventors: John S. Cottrell, Patrick J. Turner, David J. Kay